pH/Cathepsin B Hierarchical‐Responsive Nanoconjugates for Enhanced Tumor Penetration and Chemo‐Immunotherapy

An ideal cancer nanomedicine should precisely deliver therapeutics to its intracellular target within tumor cells. However, the multiple biological barriers seriously hinder their delivery efficiency, leading to unsatisfactory therapeutic outcome. Herein, pH/cathepsin B hierarchical‐responsive nanoc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2020-09, Vol.30 (39), p.n/a
Hauptverfasser: Du, Hongliang, Zhao, Sui, Wang, Yaoqi, Wang, Zenghui, Chen, Binlong, Yan, Yue, Yin, Qingqing, Liu, Dechun, Wan, Fangjie, Zhang, Qiang, Wang, Yiguang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An ideal cancer nanomedicine should precisely deliver therapeutics to its intracellular target within tumor cells. However, the multiple biological barriers seriously hinder their delivery efficiency, leading to unsatisfactory therapeutic outcome. Herein, pH/cathepsin B hierarchical‐responsive nanoconjugates (HRNs) are reported to overcome these barriers by sequentially responding to extra‐ and intracellular stimuli in solid tumors for programmed delivery of docetaxel (DTX). The HRNs have stable nanostructures (≈40 nm) in blood circulation for efficient tumor accumulation, while the tumor extracellular acidity induces the rapid dissociation of HRNs into polymer conjugates (≈5 nm), facilitating the deep tumor penetration and cellular internalization. After being trapped into the lysosomes, the conjugates are cleaved by cathepsin B to release bioactive DTX into cytoplasm and inhibit cell proliferation. In addition to the direct inhibition effect, HRNs can trigger the in vivo antitumor immune responses via the immunogenic modulation of tumor cells, activation of dendritic cells (DCs), and generation of cytotoxic T‐cell responses. By employing a combination with α‐PD‐1 (programmed cell death 1) therapy, synergistic antitumor efficacy is achieved in B16 expressing ovalbumin (B16OVA) tumor model. Hence, this strategy demonstrates high efficiency for precise intracellular delivery of chemotherapeutics and provides a potential clinical candidate for cancer chemo‐immunotherapy. The designed pH/cathepsin B hierarchical‐responsive nanoconjugates can precisely deliver docetaxel to its intracellular target within tumor cells through a dissociation in acidic tumor microenvironment for enhanced tumor penetration and enzyme‐mediated drug release in lysosomes for effective lysosomal escape, resulting in highly improved therapeutic efficacy with enhanced antitumor immune responses.
ISSN:1616-301X
1616-3028
DOI:10.1002/adfm.202003757