Stable minimizers of functionals of the gradient

Let Ω ⊂ ℝn be a bounded Lipschitz domain. Let $L: {\mathbb R}^n\rightarrow \bar {\mathbb R}= {\mathbb R}\cup \{+\infty \}$ be a continuous function with superlinear growth at infinity, and consider the functional $\mathcal {I}(u)=\int \nolimits _\Omega L(Du)$, u ∈ W1,1(Ω). We provide necessary and s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society of Edinburgh. Section A. Mathematics 2020-10, Vol.150 (5), p.2642-2655
Hauptverfasser: Sychev, Mikhail A., Treu, Giulia, Colombo, Giovanni
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let Ω ⊂ ℝn be a bounded Lipschitz domain. Let $L: {\mathbb R}^n\rightarrow \bar {\mathbb R}= {\mathbb R}\cup \{+\infty \}$ be a continuous function with superlinear growth at infinity, and consider the functional $\mathcal {I}(u)=\int \nolimits _\Omega L(Du)$, u ∈ W1,1(Ω). We provide necessary and sufficient conditions on L under which, for all f ∈ W1,1(Ω) such that $\mathcal {I}(f) < +\infty $, the problem of minimizing $\mathcal {I}(u)$ with the boundary condition u|∂Ω = f has a solution which is stable, or – alternatively – is such that all of its solutions are stable. By stability of $\mathcal {I}$ at u we mean that $u_k\rightharpoonup u$ weakly in W1,1(Ω) together with $\mathcal {I}(u_k)\to \mathcal {I}(u)$ imply uk → u strongly in W1,1(Ω). This extends to general boundary data some results obtained by Cellina and Cellina and Zagatti. Furthermore, with respect to the preceding literature on existence results for scalar variational problems, we drop the assumption that the relaxed functional admits a continuous minimizer.
ISSN:0308-2105
1473-7124
DOI:10.1017/prm.2019.38