Measurement of Gravitational Coupling between Millimeter-Sized Masses

We demonstrate gravitational coupling between two gold spheres of approximately 1mm radius and 90mg mass. By periodically modulating the source mass position at a frequency f=12.7mHz we generate a time-dependent gravitational acceleration at the location of the test mass, which is measured off reson...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-03
Hauptverfasser: Westphal, Tobias, Hepach, Hans, Pfaff, Jeremias, Aspelmeyer, Markus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Westphal, Tobias
Hepach, Hans
Pfaff, Jeremias
Aspelmeyer, Markus
description We demonstrate gravitational coupling between two gold spheres of approximately 1mm radius and 90mg mass. By periodically modulating the source mass position at a frequency f=12.7mHz we generate a time-dependent gravitational acceleration at the location of the test mass, which is measured off resonance in a miniature torsional balance configuration. Over an integration time of 350 hours the test mass oscillator enables measurements with a systematic accuracy of 4E-11m/s^2 and a statistical precision of 4E-12m/s^2. This is sufficient to resolve the gravitational signal at a minimal surface distance of 400mum between the two masses. We observe both linear and quadratic coupling, consistent in signal strength with a time-varying 1/r gravitational potential. Contributions of non-gravitational forces could be kept to less than 10% of the observed signal. We expect further improvements to enable the isolation of gravity as a coupling force for objects well below the Planck mass. This opens the way for precision tests of gravity in a new regime of isolated microscopic source masses.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2444735820</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2444735820</sourcerecordid><originalsourceid>FETCH-proquest_journals_24447358203</originalsourceid><addsrcrecordid>eNqNzLEKwjAUQNEgCBbtPwScC_Eltd1L1aWT7iXiq6SkSc1LFPx6HfwAp7sc7oJlIOWuqBXAiuVEoxAC9hWUpcxY26GmFHBCF7kf-DHop4k6Gu-05Y1PszXuzq8YX4iOd8ZaM2HEUJzNG2-800RIG7YctCXMf12z7aG9NKdiDv6RkGI_-hS-R-pBKVXJsgYh_1MfvrU7Xw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2444735820</pqid></control><display><type>article</type><title>Measurement of Gravitational Coupling between Millimeter-Sized Masses</title><source>Free E- Journals</source><creator>Westphal, Tobias ; Hepach, Hans ; Pfaff, Jeremias ; Aspelmeyer, Markus</creator><creatorcontrib>Westphal, Tobias ; Hepach, Hans ; Pfaff, Jeremias ; Aspelmeyer, Markus</creatorcontrib><description>We demonstrate gravitational coupling between two gold spheres of approximately 1mm radius and 90mg mass. By periodically modulating the source mass position at a frequency f=12.7mHz we generate a time-dependent gravitational acceleration at the location of the test mass, which is measured off resonance in a miniature torsional balance configuration. Over an integration time of 350 hours the test mass oscillator enables measurements with a systematic accuracy of 4E-11m/s^2 and a statistical precision of 4E-12m/s^2. This is sufficient to resolve the gravitational signal at a minimal surface distance of 400mum between the two masses. We observe both linear and quadratic coupling, consistent in signal strength with a time-varying 1/r gravitational potential. Contributions of non-gravitational forces could be kept to less than 10% of the observed signal. We expect further improvements to enable the isolation of gravity as a coupling force for objects well below the Planck mass. This opens the way for precision tests of gravity in a new regime of isolated microscopic source masses.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Acceleration ; Coupling ; Gravitation ; Minimal surfaces ; Signal strength ; Time dependence</subject><ispartof>arXiv.org, 2021-03</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Westphal, Tobias</creatorcontrib><creatorcontrib>Hepach, Hans</creatorcontrib><creatorcontrib>Pfaff, Jeremias</creatorcontrib><creatorcontrib>Aspelmeyer, Markus</creatorcontrib><title>Measurement of Gravitational Coupling between Millimeter-Sized Masses</title><title>arXiv.org</title><description>We demonstrate gravitational coupling between two gold spheres of approximately 1mm radius and 90mg mass. By periodically modulating the source mass position at a frequency f=12.7mHz we generate a time-dependent gravitational acceleration at the location of the test mass, which is measured off resonance in a miniature torsional balance configuration. Over an integration time of 350 hours the test mass oscillator enables measurements with a systematic accuracy of 4E-11m/s^2 and a statistical precision of 4E-12m/s^2. This is sufficient to resolve the gravitational signal at a minimal surface distance of 400mum between the two masses. We observe both linear and quadratic coupling, consistent in signal strength with a time-varying 1/r gravitational potential. Contributions of non-gravitational forces could be kept to less than 10% of the observed signal. We expect further improvements to enable the isolation of gravity as a coupling force for objects well below the Planck mass. This opens the way for precision tests of gravity in a new regime of isolated microscopic source masses.</description><subject>Acceleration</subject><subject>Coupling</subject><subject>Gravitation</subject><subject>Minimal surfaces</subject><subject>Signal strength</subject><subject>Time dependence</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNzLEKwjAUQNEgCBbtPwScC_Eltd1L1aWT7iXiq6SkSc1LFPx6HfwAp7sc7oJlIOWuqBXAiuVEoxAC9hWUpcxY26GmFHBCF7kf-DHop4k6Gu-05Y1PszXuzq8YX4iOd8ZaM2HEUJzNG2-800RIG7YctCXMf12z7aG9NKdiDv6RkGI_-hS-R-pBKVXJsgYh_1MfvrU7Xw</recordid><startdate>20210302</startdate><enddate>20210302</enddate><creator>Westphal, Tobias</creator><creator>Hepach, Hans</creator><creator>Pfaff, Jeremias</creator><creator>Aspelmeyer, Markus</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210302</creationdate><title>Measurement of Gravitational Coupling between Millimeter-Sized Masses</title><author>Westphal, Tobias ; Hepach, Hans ; Pfaff, Jeremias ; Aspelmeyer, Markus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24447358203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acceleration</topic><topic>Coupling</topic><topic>Gravitation</topic><topic>Minimal surfaces</topic><topic>Signal strength</topic><topic>Time dependence</topic><toplevel>online_resources</toplevel><creatorcontrib>Westphal, Tobias</creatorcontrib><creatorcontrib>Hepach, Hans</creatorcontrib><creatorcontrib>Pfaff, Jeremias</creatorcontrib><creatorcontrib>Aspelmeyer, Markus</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Westphal, Tobias</au><au>Hepach, Hans</au><au>Pfaff, Jeremias</au><au>Aspelmeyer, Markus</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Measurement of Gravitational Coupling between Millimeter-Sized Masses</atitle><jtitle>arXiv.org</jtitle><date>2021-03-02</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>We demonstrate gravitational coupling between two gold spheres of approximately 1mm radius and 90mg mass. By periodically modulating the source mass position at a frequency f=12.7mHz we generate a time-dependent gravitational acceleration at the location of the test mass, which is measured off resonance in a miniature torsional balance configuration. Over an integration time of 350 hours the test mass oscillator enables measurements with a systematic accuracy of 4E-11m/s^2 and a statistical precision of 4E-12m/s^2. This is sufficient to resolve the gravitational signal at a minimal surface distance of 400mum between the two masses. We observe both linear and quadratic coupling, consistent in signal strength with a time-varying 1/r gravitational potential. Contributions of non-gravitational forces could be kept to less than 10% of the observed signal. We expect further improvements to enable the isolation of gravity as a coupling force for objects well below the Planck mass. This opens the way for precision tests of gravity in a new regime of isolated microscopic source masses.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2444735820
source Free E- Journals
subjects Acceleration
Coupling
Gravitation
Minimal surfaces
Signal strength
Time dependence
title Measurement of Gravitational Coupling between Millimeter-Sized Masses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T06%3A09%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Measurement%20of%20Gravitational%20Coupling%20between%20Millimeter-Sized%20Masses&rft.jtitle=arXiv.org&rft.au=Westphal,%20Tobias&rft.date=2021-03-02&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2444735820%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2444735820&rft_id=info:pmid/&rfr_iscdi=true