Measurement of Gravitational Coupling between Millimeter-Sized Masses
We demonstrate gravitational coupling between two gold spheres of approximately 1mm radius and 90mg mass. By periodically modulating the source mass position at a frequency f=12.7mHz we generate a time-dependent gravitational acceleration at the location of the test mass, which is measured off reson...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-03 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Westphal, Tobias Hepach, Hans Pfaff, Jeremias Aspelmeyer, Markus |
description | We demonstrate gravitational coupling between two gold spheres of approximately 1mm radius and 90mg mass. By periodically modulating the source mass position at a frequency f=12.7mHz we generate a time-dependent gravitational acceleration at the location of the test mass, which is measured off resonance in a miniature torsional balance configuration. Over an integration time of 350 hours the test mass oscillator enables measurements with a systematic accuracy of 4E-11m/s^2 and a statistical precision of 4E-12m/s^2. This is sufficient to resolve the gravitational signal at a minimal surface distance of 400mum between the two masses. We observe both linear and quadratic coupling, consistent in signal strength with a time-varying 1/r gravitational potential. Contributions of non-gravitational forces could be kept to less than 10% of the observed signal. We expect further improvements to enable the isolation of gravity as a coupling force for objects well below the Planck mass. This opens the way for precision tests of gravity in a new regime of isolated microscopic source masses. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2444735820</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2444735820</sourcerecordid><originalsourceid>FETCH-proquest_journals_24447358203</originalsourceid><addsrcrecordid>eNqNzLEKwjAUQNEgCBbtPwScC_Eltd1L1aWT7iXiq6SkSc1LFPx6HfwAp7sc7oJlIOWuqBXAiuVEoxAC9hWUpcxY26GmFHBCF7kf-DHop4k6Gu-05Y1PszXuzq8YX4iOd8ZaM2HEUJzNG2-800RIG7YctCXMf12z7aG9NKdiDv6RkGI_-hS-R-pBKVXJsgYh_1MfvrU7Xw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2444735820</pqid></control><display><type>article</type><title>Measurement of Gravitational Coupling between Millimeter-Sized Masses</title><source>Free E- Journals</source><creator>Westphal, Tobias ; Hepach, Hans ; Pfaff, Jeremias ; Aspelmeyer, Markus</creator><creatorcontrib>Westphal, Tobias ; Hepach, Hans ; Pfaff, Jeremias ; Aspelmeyer, Markus</creatorcontrib><description>We demonstrate gravitational coupling between two gold spheres of approximately 1mm radius and 90mg mass. By periodically modulating the source mass position at a frequency f=12.7mHz we generate a time-dependent gravitational acceleration at the location of the test mass, which is measured off resonance in a miniature torsional balance configuration. Over an integration time of 350 hours the test mass oscillator enables measurements with a systematic accuracy of 4E-11m/s^2 and a statistical precision of 4E-12m/s^2. This is sufficient to resolve the gravitational signal at a minimal surface distance of 400mum between the two masses. We observe both linear and quadratic coupling, consistent in signal strength with a time-varying 1/r gravitational potential. Contributions of non-gravitational forces could be kept to less than 10% of the observed signal. We expect further improvements to enable the isolation of gravity as a coupling force for objects well below the Planck mass. This opens the way for precision tests of gravity in a new regime of isolated microscopic source masses.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Acceleration ; Coupling ; Gravitation ; Minimal surfaces ; Signal strength ; Time dependence</subject><ispartof>arXiv.org, 2021-03</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Westphal, Tobias</creatorcontrib><creatorcontrib>Hepach, Hans</creatorcontrib><creatorcontrib>Pfaff, Jeremias</creatorcontrib><creatorcontrib>Aspelmeyer, Markus</creatorcontrib><title>Measurement of Gravitational Coupling between Millimeter-Sized Masses</title><title>arXiv.org</title><description>We demonstrate gravitational coupling between two gold spheres of approximately 1mm radius and 90mg mass. By periodically modulating the source mass position at a frequency f=12.7mHz we generate a time-dependent gravitational acceleration at the location of the test mass, which is measured off resonance in a miniature torsional balance configuration. Over an integration time of 350 hours the test mass oscillator enables measurements with a systematic accuracy of 4E-11m/s^2 and a statistical precision of 4E-12m/s^2. This is sufficient to resolve the gravitational signal at a minimal surface distance of 400mum between the two masses. We observe both linear and quadratic coupling, consistent in signal strength with a time-varying 1/r gravitational potential. Contributions of non-gravitational forces could be kept to less than 10% of the observed signal. We expect further improvements to enable the isolation of gravity as a coupling force for objects well below the Planck mass. This opens the way for precision tests of gravity in a new regime of isolated microscopic source masses.</description><subject>Acceleration</subject><subject>Coupling</subject><subject>Gravitation</subject><subject>Minimal surfaces</subject><subject>Signal strength</subject><subject>Time dependence</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNzLEKwjAUQNEgCBbtPwScC_Eltd1L1aWT7iXiq6SkSc1LFPx6HfwAp7sc7oJlIOWuqBXAiuVEoxAC9hWUpcxY26GmFHBCF7kf-DHop4k6Gu-05Y1PszXuzq8YX4iOd8ZaM2HEUJzNG2-800RIG7YctCXMf12z7aG9NKdiDv6RkGI_-hS-R-pBKVXJsgYh_1MfvrU7Xw</recordid><startdate>20210302</startdate><enddate>20210302</enddate><creator>Westphal, Tobias</creator><creator>Hepach, Hans</creator><creator>Pfaff, Jeremias</creator><creator>Aspelmeyer, Markus</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210302</creationdate><title>Measurement of Gravitational Coupling between Millimeter-Sized Masses</title><author>Westphal, Tobias ; Hepach, Hans ; Pfaff, Jeremias ; Aspelmeyer, Markus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24447358203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acceleration</topic><topic>Coupling</topic><topic>Gravitation</topic><topic>Minimal surfaces</topic><topic>Signal strength</topic><topic>Time dependence</topic><toplevel>online_resources</toplevel><creatorcontrib>Westphal, Tobias</creatorcontrib><creatorcontrib>Hepach, Hans</creatorcontrib><creatorcontrib>Pfaff, Jeremias</creatorcontrib><creatorcontrib>Aspelmeyer, Markus</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Westphal, Tobias</au><au>Hepach, Hans</au><au>Pfaff, Jeremias</au><au>Aspelmeyer, Markus</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Measurement of Gravitational Coupling between Millimeter-Sized Masses</atitle><jtitle>arXiv.org</jtitle><date>2021-03-02</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>We demonstrate gravitational coupling between two gold spheres of approximately 1mm radius and 90mg mass. By periodically modulating the source mass position at a frequency f=12.7mHz we generate a time-dependent gravitational acceleration at the location of the test mass, which is measured off resonance in a miniature torsional balance configuration. Over an integration time of 350 hours the test mass oscillator enables measurements with a systematic accuracy of 4E-11m/s^2 and a statistical precision of 4E-12m/s^2. This is sufficient to resolve the gravitational signal at a minimal surface distance of 400mum between the two masses. We observe both linear and quadratic coupling, consistent in signal strength with a time-varying 1/r gravitational potential. Contributions of non-gravitational forces could be kept to less than 10% of the observed signal. We expect further improvements to enable the isolation of gravity as a coupling force for objects well below the Planck mass. This opens the way for precision tests of gravity in a new regime of isolated microscopic source masses.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2444735820 |
source | Free E- Journals |
subjects | Acceleration Coupling Gravitation Minimal surfaces Signal strength Time dependence |
title | Measurement of Gravitational Coupling between Millimeter-Sized Masses |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T06%3A09%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Measurement%20of%20Gravitational%20Coupling%20between%20Millimeter-Sized%20Masses&rft.jtitle=arXiv.org&rft.au=Westphal,%20Tobias&rft.date=2021-03-02&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2444735820%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2444735820&rft_id=info:pmid/&rfr_iscdi=true |