Measurement of Gravitational Coupling between Millimeter-Sized Masses

We demonstrate gravitational coupling between two gold spheres of approximately 1mm radius and 90mg mass. By periodically modulating the source mass position at a frequency f=12.7mHz we generate a time-dependent gravitational acceleration at the location of the test mass, which is measured off reson...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-03
Hauptverfasser: Westphal, Tobias, Hepach, Hans, Pfaff, Jeremias, Aspelmeyer, Markus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We demonstrate gravitational coupling between two gold spheres of approximately 1mm radius and 90mg mass. By periodically modulating the source mass position at a frequency f=12.7mHz we generate a time-dependent gravitational acceleration at the location of the test mass, which is measured off resonance in a miniature torsional balance configuration. Over an integration time of 350 hours the test mass oscillator enables measurements with a systematic accuracy of 4E-11m/s^2 and a statistical precision of 4E-12m/s^2. This is sufficient to resolve the gravitational signal at a minimal surface distance of 400mum between the two masses. We observe both linear and quadratic coupling, consistent in signal strength with a time-varying 1/r gravitational potential. Contributions of non-gravitational forces could be kept to less than 10% of the observed signal. We expect further improvements to enable the isolation of gravity as a coupling force for objects well below the Planck mass. This opens the way for precision tests of gravity in a new regime of isolated microscopic source masses.
ISSN:2331-8422