Spectroscopic characterization and antimicrobial activity of nanoparticle doped cyclodextrin polyurethane bionanosponge

This study reports on the spectroscopic characterization and antimicrobial potency of polyurethane cyclodextrin co-polymerized phosphorylated multiwalled carbon nanotube-doped Ag-TiO2 nanoparticle (pMWCNT-CD/Ag-TiO2) bionanosponge nanocomposite. The synthesis of pMWCNT-CD/Ag-TiO2 bionanosponge nanoc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials Science & Engineering C 2020-10, Vol.115, p.111092, Article 111092
Hauptverfasser: Leudjo Taka, Anny, Doyle, Bryan P., Carleschi, Emanuela, Youmbi Fonkui, Thierry, Erasmus, Rudolph, Fosso-Kankeu, Elvis, Pillay, Kriveshini, Mbianda, Xavier Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study reports on the spectroscopic characterization and antimicrobial potency of polyurethane cyclodextrin co-polymerized phosphorylated multiwalled carbon nanotube-doped Ag-TiO2 nanoparticle (pMWCNT-CD/Ag-TiO2) bionanosponge nanocomposite. The synthesis of pMWCNT-CD/Ag-TiO2 bionanosponge nanocomposite was carried out through the combined processes of amidation and polymerization reactions as well as the sol-gel method. The native nanosponge cyclodextrin and phosphorylated multiwalled carbon nanotube–nanosponge CD (pMWCNT-CD) polyurethanes were also prepared, and their antimicrobial activities carried out for comparison purposes. The synthesized bionanosponge polyurethane materials were characterized using Fourier-transform infrared (FTIR) spectroscopy, Laser Raman spectroscopy, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) to give clear information regarding their structural, and dynamic physicochemical properties. The potency tests of the synthesized compounds were carried out against three bacterial strains Escherichia coli, Bacillus subtilis, Staphylococcus aureus, and two fungal representatives Aspergillus ochraceus and Aspergillus fumigatus, using the disc diffusion method. Micro dilution and agar plating were used to determine the minimum bactericidal concentration (MBC) and minimum fungicidal concentration (MFC), respectively. The results obtained revealed that pMWCNT-CD/Ag-TiO2 exhibits superior antibacterial and antifungal activities when compared to the other bionanosponge polymers tested. Thus, the bionanosponge polyurethane pMWCNT-CD/Ag-TiO2 nanocomposite can be considered as an active antimicrobial compound (AMC). •Elucidation of structural and physico-chemical properties of cyclodextrin bionanosponges•Determination of the elemental composition of cyclodextrin bionanosponges•Determination of Antifungal and antibacterial activities of cyclodextrin bionanosponges
ISSN:0928-4931
1873-0191
DOI:10.1016/j.msec.2020.111092