Magnetic-field-induced synthesis of amorphous iron-nickel wire-like nanostructures
Manufacturing process of wire-like binary or ternary metal nanoalloys applying the magnetic-field-induced (MFI) synthesis is still a challenging task. Hence, this work demonstrates for the first time how to produce the iron-nickel wire-like nanostructures with Fe0·75Ni0.25, Fe0·5Ni0.5 and Fe0·25Ni0....
Gespeichert in:
Veröffentlicht in: | Materials chemistry and physics 2020-05, Vol.246, p.122812, Article 122812 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Manufacturing process of wire-like binary or ternary metal nanoalloys applying the magnetic-field-induced (MFI) synthesis is still a challenging task. Hence, this work demonstrates for the first time how to produce the iron-nickel wire-like nanostructures with Fe0·75Ni0.25, Fe0·5Ni0.5 and Fe0·25Ni0.75 compositions. In a contrary to the previously reported synthesis of the Fe–Ni wire-like nanomaterials, this process has been carried out at room temperature without employment of templates, surfactants, organic solvents, and other chemical additives. The as-prepared samples exhibit specific structures with the amorphous bimetallic alloy cores covered by thin amorphous oxide shells. Moreover, they are composed of nanoparticles which are aligned in nearly linear chains. The Fe–Ni samples are ferromagnetic materials. Their coercivity values and saturation magnetizations depend on chemical compositions and dimensions of the investigated chains. The highest saturation magnetization and the lowest coercivity is found for the material with the lowest content of nickel and vice versa.
•Formation of amorphous wire-like nanomaterials via magnetic-field-induced synthesis.•Synthesis procedures of Fe–Ni wire-like nanostructures are provided.•Fe–Ni wire-like materials consist of nanoparticles and reveal core-shell structures.•Investigated wire-like nanochains are ferromagnetic nanoalloys. |
---|---|
ISSN: | 0254-0584 1879-3312 |
DOI: | 10.1016/j.matchemphys.2020.122812 |