Electronic Properties of Calcium and Zirconium Co-Doped BaTiO3
Barium titanate (BaTiO3) is a perovskite based oxides with many potential application in electronic devices. From experimental report BaTiO3 has wide energy band gap of about 3.4 eV which by doped with Ca and Zr at A- and B- sites respectively can enhance their piezoelectric properties. Using first...
Gespeichert in:
Veröffentlicht in: | Materials science forum 2020-09, Vol.1010, p.308-313 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Barium titanate (BaTiO3) is a perovskite based oxides with many potential application in electronic devices. From experimental report BaTiO3 has wide energy band gap of about 3.4 eV which by doped with Ca and Zr at A- and B- sites respectively can enhance their piezoelectric properties. Using first principles method within the density functional theory (DFT) as implement in Quantum Espresso (QE) with the plane wave pseudo potential function, the influence of the Ca and Zr doping in BaTiO3 are studied via electronic properties: band structure, total density of states (TDOS) and partial density of states (PDOS). The energy band gap calculated was underestimation which is similar to other DFT work. Two direct band gap where observed in Ba0.875Ca0.125Ti0.875Zr0.125O3 sample at Γ- Γ (2.31 eV) and X- X (2.35 eV) symmetry point. |
---|---|
ISSN: | 0255-5476 1662-9752 1662-9752 |
DOI: | 10.4028/www.scientific.net/MSF.1010.308 |