The Effect of Sn Doping on the Thermoelectric Properties of SiGe Using First Principle Technique

The thermoelectric properties of hexagonal SiGe doped with Sn with doping percentage of 12.5% and 25% were investigated using linearised augmented plane wave method using the WIEN2k package and semiclassical Boltztmann Transport equation using the BoltzTraP software for the purpose of understanding...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science forum 2020-09, Vol.1010, p.327-333
Hauptverfasser: Pa, Faizul Che, Yeoh, Cheow Keat, Zaki, Ruhiyuddin Mohd, Chik, Abdullah, Kheng, Haw Wei, Adewale, Akeem Adekunle
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The thermoelectric properties of hexagonal SiGe doped with Sn with doping percentage of 12.5% and 25% were investigated using linearised augmented plane wave method using the WIEN2k package and semiclassical Boltztmann Transport equation using the BoltzTraP software for the purpose of understanding the role of Sn as a dopant in the SiGe. For temperature range of 300 to 1000 K, it can be seen that by doping with Sn, there is an improvement in overall thermal conductivity of the samples with the highest improvement is in the 25% doped sample. The conductivity vs temperature for 25% Sn doped SiGe also shows higher value through temperature range from 300 K to 1000 K, however the Seebeck coefficient decreases with Sn doping percentage for the same temperature range. Due to lower Seebeck coefficient and higher thermal conductivity values, the overall thermoelectric coefficient, ZT, of the doped compound is lower than the SiGe values with highest ZT equal to 0.29 and 0.17 at 650 K for 12.5% and 25% respectively while the ZT of simulated SiGe at 650 K is 0.35. Thus 25% Sn doping actually reduce the ZT but enhanced the thermal and electrical conductivity of SiGe for temperature range of 300 to 1000 K.
ISSN:0255-5476
1662-9752
1662-9752
DOI:10.4028/www.scientific.net/MSF.1010.327