Exosomes from high glucose-treated macrophages activate macrophages and induce inflammatory responses via NF-κB signaling pathway in vitro and in vivo

There is increasing evidence that macrophages play an important role in the development and pathogenesis of diabetic nephropathy (DN) by secreting inflammatory cytokines. Exosomes are a family of extracellular vesicles that are secreted from almost all types of cells and associated with cell-to-cell...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International immunopharmacology 2020-07, Vol.84, p.106551, Article 106551
Hauptverfasser: Zhu, Mei, Sun, Xuanjun, Qi, Xiangming, Xia, Lingling, Wu, Yonggui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:There is increasing evidence that macrophages play an important role in the development and pathogenesis of diabetic nephropathy (DN) by secreting inflammatory cytokines. Exosomes are a family of extracellular vesicles that are secreted from almost all types of cells and associated with cell-to-cell communications. In this article, we try to investigate whether high glucose (HG)-treated macrophages-derived exosomes could activate macrophages and induce inflammatory responses in vivo and in vitro. We incubated the exosomes from high glucose-treated Raw264.7 cells (HG-Exo) and Raw264.7 cells for 24 h. The expression levels of related inflammatory molecules and NF-κB p65 signaling pathway were identified, as well as the intracellular localization of NF-κB p65 was detected. In vivo, HG-Exo was injected into mice via tail vein and the related parameters of kidneys were detected. Compared with the exosomes from normal glucose-treated Raw264.7 cells (NG-Exo), HG-Exo contained higher concentrations of IL-1β and iNOS. HG-Exo-treated Raw264.7 cells secreted higher level of related inflammatory molecules and promoted NF-κB p65 signaling pathway expression. HG-Exo induced the production of intracellular iNOS and α-SMA. In the HG-Exo group, NF-κB p65 positive signals were mainly distributed in the nucleus area. HG-Exo treated mice kidneys displayed a significantly mesangial expansion and proliferation. NF-κB p65 protein expression levels in mice renal tissue treated with HG-Exo was significantly up-regulated. These findings suggest that high glucose treated macrophages-derived exosomes may activate macrophages and accelerate kidney injury via NF-κB p65 signaling pathway.
ISSN:1567-5769
1878-1705
DOI:10.1016/j.intimp.2020.106551