Transferability of Process Parameters in Laser Powder Bed Fusion Processes for an Energy and Cost Efficient Manufacturing

In the past decade, the sales of metal additive manufacturing systems have increased intensely. In particular, PBF-LB/M systems (powder bed fusion of metals using a laser-based system) represent a technology of great industrial interest, in which metallic powders are molten and solidified layer upon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2020-02, Vol.12 (4), p.1565
Hauptverfasser: Pannitz, Oliver, Sehrt, Jan T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the past decade, the sales of metal additive manufacturing systems have increased intensely. In particular, PBF-LB/M systems (powder bed fusion of metals using a laser-based system) represent a technology of great industrial interest, in which metallic powders are molten and solidified layer upon layer by a focused laser beam. This leads to a simultaneous increase in demand for metallic powder materials. Due to adjusted process parameters of PBF-LB/M systems, the powder is usually procured by the system’s manufacturer. The requirement and freedom to process different feedstocks in a reproducible quality and the economic and ecological factors involved are reasons to have a closer look at the differences between the quality of the provided metallic powders. Besides, different feedstock materials require different energy inputs, allowing a sustainable process control to be established. In this work, powder quality of stainless steel 1.4404 and the effects during the processing of metallic powders that are nominally the same were analyzed and the influence on the build process followed by the final part quality was investigated. Thus, a correlation between morphology, particle size distribution, absorptivity, flowability, and densification depending on process parameters was demonstrated. Optimized exposure parameters to ensure a more sustainable and energy and cost-efficient manufacturing process were determined.
ISSN:2071-1050
2071-1050
DOI:10.3390/su12041565