Highly conducting 1-D polypyrrole prepared in the presence of safranin
A facile preparation of a conducting one-dimensional polypyrrole nanostructure (1-D PPy) was achieved in the presence of safranin dye. The polymerization temperature has a significant effect on the conductivity, specific surface area and morphology of PPy. A decrease in the polymerization temperatur...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2020-09, Vol.8 (35), p.1214-12147 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A facile preparation of a conducting one-dimensional polypyrrole nanostructure (1-D PPy) was achieved in the presence of safranin dye. The polymerization temperature has a significant effect on the conductivity, specific surface area and morphology of PPy. A decrease in the polymerization temperature leads to a significant increase in the conductivity. The highest conductivity was obtained by frozen polymerization (−24 °C) with a value of 175 ± 4 and 23.7 ± 2.9 S cm
−1
for 1-D PPy and globular PPy, respectively. The temperature dependence of the conductivity of 1-D PPy prepared at −24 °C revealed a semiconducting behaviour with a 3-D variable range hopping charge transfer mechanism. Raman spectroscopy results suggested that the high conductivity can be attributed to the high protonation level of 1-D PPy. Nuclear magnetic resonance spectroscopy has been used to study the chemical structure of 1-D PPy and the incorporation of safranin into the polymer matrix.
The schematic preparation of globular and 1-D polypyrrole and the effect of polymerization temperature on the conductivity. |
---|---|
ISSN: | 2050-7526 2050-7534 |
DOI: | 10.1039/d0tc02838j |