Asymptotics of the Lebesgue constants for bivariate approximation processes

In this paper asymptotic formulas are given for the Lebesgue constants generated by three special approximation processes related to the \(\ell_1\)-partial sums of Fourier series. In particular, we consider the Lagrange interpolation polynomials based on the Lissajous-Chebyshev node points, the part...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-09
Hauptverfasser: Kolomoitsev, Yurii, Lomako, Tetiana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper asymptotic formulas are given for the Lebesgue constants generated by three special approximation processes related to the \(\ell_1\)-partial sums of Fourier series. In particular, we consider the Lagrange interpolation polynomials based on the Lissajous-Chebyshev node points, the partial sums of the Fourier series generated by the anisotropically dilated rhombus, and the corresponding discrete partial sums.
ISSN:2331-8422