Asymptotics of the Lebesgue constants for bivariate approximation processes
In this paper asymptotic formulas are given for the Lebesgue constants generated by three special approximation processes related to the \(\ell_1\)-partial sums of Fourier series. In particular, we consider the Lagrange interpolation polynomials based on the Lissajous-Chebyshev node points, the part...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-09 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper asymptotic formulas are given for the Lebesgue constants generated by three special approximation processes related to the \(\ell_1\)-partial sums of Fourier series. In particular, we consider the Lagrange interpolation polynomials based on the Lissajous-Chebyshev node points, the partial sums of the Fourier series generated by the anisotropically dilated rhombus, and the corresponding discrete partial sums. |
---|---|
ISSN: | 2331-8422 |