Not-NUTs at W-NUT 2020 Task 2: A BERT-based System in Identifying Informative COVID-19 English Tweets
As of 2020 when the COVID-19 pandemic is full-blown on a global scale, people's need to have access to legitimate information regarding COVID-19 is more urgent than ever, especially via online media where the abundance of irrelevant information overshadows the more informative ones. In response...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-09 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | As of 2020 when the COVID-19 pandemic is full-blown on a global scale, people's need to have access to legitimate information regarding COVID-19 is more urgent than ever, especially via online media where the abundance of irrelevant information overshadows the more informative ones. In response to such, we proposed a model that, given an English tweet, automatically identifies whether that tweet bears informative content regarding COVID-19 or not. By ensembling different BERTweet model configurations, we have achieved competitive results that are only shy of those by top performing teams by roughly 1% in terms of F1 score on the informative class. In the post-competition period, we have also experimented with various other approaches that potentially boost generalization to a new dataset. |
---|---|
ISSN: | 2331-8422 |