ZIF‐Induced d‐Band Modification in a Bimetallic Nanocatalyst: Achieving Over 44 % Efficiency in the Ambient Nitrogen Reduction Reaction

The electrochemical nitrogen reduction reaction (NRR) offers a sustainable solution towards ammonia production but suffers poor reaction performance owing to preferential catalyst–H formation and the consequential hydrogen evolution reaction (HER). Now, the Pt/Au electrocatalyst d‐band structure is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie 2020-09, Vol.132 (39), p.17145-17151
Hauptverfasser: Sim, Howard Yi Fan, Chen, Jaslyn Ru Ting, Koh, Charlynn Sher Lin, Lee, Hiang Kwee, Han, Xuemei, Phan‐Quang, Gia Chuong, Pang, Jing Yi, Lay, Chee Leng, Pedireddy, Srikanth, Phang, In Yee, Yeow, Edwin Kok Lee, Ling, Xing Yi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The electrochemical nitrogen reduction reaction (NRR) offers a sustainable solution towards ammonia production but suffers poor reaction performance owing to preferential catalyst–H formation and the consequential hydrogen evolution reaction (HER). Now, the Pt/Au electrocatalyst d‐band structure is electronically modified using zeolitic imidazole framework (ZIF) to achieve a Faradaic efficiency (FE) of >44 % with high ammonia yield rate of >161 μg mgcat−1 h−1 under ambient conditions. The strategy lowers electrocatalyst d‐band position to weaken H adsorption and concurrently creates electron‐deficient sites to kinetically drive NRR by promoting catalyst–N2 interaction. The ZIF coating on the electrocatalyst doubles as a hydrophobic layer to suppress HER, further improving FE by >44‐fold compared to without ZIF (ca. 1 %). The Pt/Au‐NZIF interaction is key to enable strong N2 adsorption over H atom. A kinetically driven ambient nitrogen reduction reaction has a Faradaic efficiency of over 44 % and an ammonia yield rate of over 161 μg mgcat−1 h−1. It employs a zeolitic imidazole framework to induce electron‐deficient sites on the catalyst and a lower d‐band to weaken catalyst–H interactions whilst promoting the catalyst–N2 interaction.
ISSN:0044-8249
1521-3757
DOI:10.1002/ange.202006071