Constrained null controllability for distributed systems and applications to hyperbolic-like equations

We consider linear control systems of the form y′(t) = Ay(t) + Bu(t) on a Hilbert space Y . We suppose that the control operator B is bounded from the control space U to a larger extrapolation space containing Y . The aim is to study the null controllability in the case where the control u is constr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ESAIM. Control, optimisation and calculus of variations optimisation and calculus of variations, 2019, Vol.25, p.32
1. Verfasser: Berrahmoune, Larbi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider linear control systems of the form y′(t) = Ay(t) + Bu(t) on a Hilbert space Y . We suppose that the control operator B is bounded from the control space U to a larger extrapolation space containing Y . The aim is to study the null controllability in the case where the control u is constrained to lie in a bounded subset Γ ⊂ U. We obtain local constrained controllability properties. When (etA)t∈ℝ is a group of isometries, we establish necessary conditions and sufficient ones for global constrained controllability. Moreover, when the constraint set Γ contains the origin in its interior, the local constrained property turns out to be equivalent to a dual observability inequality of L1 type with respect to the time variable. In this setting, the study is focused on hyperbolic-like systems which can be reduced to a second order evolution equation. Furthermore, we treat the problem of determining a steering control for general constraint set Γ in nonsmooth convex analysis context. In the case where Γ contains the origin in its interior, a steering control can be obtained by minimizing a convenient smooth convex functional. Applications to the wave equation and Euler-Bernoulli beams are presented.
ISSN:1292-8119
1262-3377
DOI:10.1051/cocv/2018018