The fabrication of flexible and oxygen barrier cellulose nanofiber/polylactic acid nanocomposites using cosolvent system

The main disadvantages of polylactic acid (PLA) for food packaging applications are its brittleness and poor gas barrier properties. The purpose of this study is to evaluate the potential usability of triethyl citrate (TEC) and cellulose nanofiber (CNF) in PLA to obtain bio‐based films with optimal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied polymer science 2020-12, Vol.137 (47), p.n/a
Hauptverfasser: Jung, Bich Nam, Jung, Hyun Wook, Kang, Dong Ho, Kim, Gi Hong, Lee, Miji, Shim, Jin Kie, Hwang, Sung Wook
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The main disadvantages of polylactic acid (PLA) for food packaging applications are its brittleness and poor gas barrier properties. The purpose of this study is to evaluate the potential usability of triethyl citrate (TEC) and cellulose nanofiber (CNF) in PLA to obtain bio‐based films with optimal properties. The incorporation of CNF as reinforcement fillers in polymer matrix has long been debated due to its difficulties to disperse uniformly in hydrophobic polymer matrix attribute to their hydrophobic nature. In order to overcome this problem, different feeding method for CNF into the mixer was studied, and CNF/PLA nanocomposites were characterized. It was found that CNF was successfully dispersed in the PLA matrix through the TEC‐CNF suspension, which greatly improved tensile strength and flexibility of the CNF/PLA nanocomposites. The oxygen barrier property was enhanced up to 47.3% (16.99 cc·mm/m2·day·atm) with the increase loading of 0.25, 0.50, and 1 wt% of CNF. Moreover, the dynamic mechanical analysis showed that the low tan delta peak of CNF/PLA nanocomposites (48.25°C) was shifted to high peak (52.99°C) due to incorporation of TEC; indicates an improved of thermal stability of the composites. Overall, the t‐CNF/PLA nanocomposites show a great feasibility for various eco‐friendly flexible packaging applications.
ISSN:0021-8995
1097-4628
DOI:10.1002/app.49536