Graphene based ceria nanocomposite synthesized by hydrothermal method for enhanced supercapacitor performance
Reduced graphene oxide – cerium oxide (rGO-CeO2) nanocomposite is prepared by simple hydrothermal method for enhanced charge storage supercapacitor performance. The prepared nanocomposite is characterized by various techniques, such as X-ray diffraction (XRD), Fourier Transform – Raman Spectra (FT-R...
Gespeichert in:
Veröffentlicht in: | Diamond and related materials 2020-05, Vol.105, p.107808, Article 107808 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Reduced graphene oxide – cerium oxide (rGO-CeO2) nanocomposite is prepared by simple hydrothermal method for enhanced charge storage supercapacitor performance. The prepared nanocomposite is characterized by various techniques, such as X-ray diffraction (XRD), Fourier Transform – Raman Spectra (FT-Raman), Field Emission - Scanning Electron Microscope (FE-SEM), High Resolution –Transmission Electron Microscope (HR-TEM), Thermo-gravimetric and Differential Thermal Analysis (TG-DTA), Cyclic Voltametric (CV), Galvanostatic Charge/Discharge (GCD) and Electrochemical Impedance Spectroscopy (EIS) studies to understand its morphology, composition, thermal stability and charge storage efficiency as electrode material. The nanocomposite formation is confirmed with FE-SEM and HR-TEM images where the ceria is anchored on the surface of the graphene sheets and the interplanar distances are observed as fringes. The Energy Dispersive Analysis of X-Ray (EDAX) has provided substantial evidence for the nanocomposite formation with the elemental composition. The maximum specific capacitance is measured as 280 F/g using GCD studies. The surface area of the nanocomposite is determined using the Brunauer-Emmett-Teller (BET) analysis.
[Display omitted]
•Reduced graphene oxide – cerium oxide (rGO-CeO2) nanocomposite is prepared by a simple hydrothermal method.•Characterized by XRD, HR- TEM, FT-Raman, HR-SEM, TG-DTA, CV, GCD, EIS to understand the various properties.•The composite is thermally more stable than pure ceria.•The pseudocapacitance is dominant for the material as the redox peaks promote nonrectangular shape in KOH electrolyte.•Obtained results endorse the composite as economical and potential electrode material for charge storage application. |
---|---|
ISSN: | 0925-9635 1879-0062 |
DOI: | 10.1016/j.diamond.2020.107808 |