A quasilinear complexity algorithm for the numerical simulation of scattering from a two-dimensional radially symmetric potential

•A fast algorithm for the 2D variable coefficient Helmholtz equation in the radially symmetric case•Allows for the solution of problems which are hundreds of thousands of wavelengths in size on desktop computers•Lays the groundwork for algorithms for the more general case of nonradially symmetric co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2020-06, Vol.410, p.109401, Article 109401
1. Verfasser: Bremer, James
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•A fast algorithm for the 2D variable coefficient Helmholtz equation in the radially symmetric case•Allows for the solution of problems which are hundreds of thousands of wavelengths in size on desktop computers•Lays the groundwork for algorithms for the more general case of nonradially symmetric coefficients Standard solvers for the variable coefficient Helmholtz equation in two spatial dimensions have running times which grow at least quadratically with the wavenumber k. Here, we describe a solver which applies only when the scattering potential is radially symmetric but whose running time is O(klog⁡(k)) in typical cases. We also present the results of numerical experiments demonstrating the properties of our solver, the code for which is publicly available.
ISSN:0021-9991
1090-2716
DOI:10.1016/j.jcp.2020.109401