Increasing durability of Pt-surface-enriched nanosize structure catalysts by multi-step platinum deposition
The sluggish reaction of oxygen reduction in proton-exchange membrane fuel cells (PEMFCs) and the durability of platinum-based catalysts have been major economical and technological barriers to the widespread application of PEMFCs. We report here on two Pt-surface-enriched nanosize structure (Pt-SEN...
Gespeichert in:
Veröffentlicht in: | Journal of solid state electrochemistry 2020-10, Vol.24 (10), p.2385-2393 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The sluggish reaction of oxygen reduction in proton-exchange membrane fuel cells (PEMFCs) and the durability of platinum-based catalysts have been major economical and technological barriers to the widespread application of PEMFCs. We report here on two Pt-surface-enriched nanosize structure (Pt-SENS) catalysts with iridium core, synthesized with the use of single-step and successive step-by-step electroless deposition of platinum. The synthesized catalysts were studied by energy-dispersive X-ray spectroscopy (SEM-EDS), X-ray photoelectron spectroscopy (XPS), and transmission scanning electron microscopy (STEM). Electrochemical analysis demonstrated improved oxygen reduction reaction (ORR) mass activity of the homemade catalysts by 25–30% compared with commercial 50%Pt/C catalyst and improved durability, by a factor of ~ 3, of the catalyst synthesized by successive step-by-step deposition following accelerated stress test (AST). Higher mass activities are attributed to better platinum utilization as a result of a Pt-surface-enriched structure, while greater durability is attributed to the stabilization of surface platinum by stronger Pt–Ir bonds induced by iridium atoms in the core. |
---|---|
ISSN: | 1432-8488 1433-0768 |
DOI: | 10.1007/s10008-020-04755-3 |