Coal-Degrading Bacteria Display Characteristics Typical of Plant Growth Promoting Rhizobacteria
Coal mining produces large quantities of discard that is stockpiled in large dumps. This stockpiled material, termed coal discard, poses an environmental threat emphasising the need for appropriate bioremediation. Here, metagenomic analysis of the 16S rRNA from ten coal-degrading strains previously...
Gespeichert in:
Veröffentlicht in: | Processes 2020-09, Vol.8 (9), p.1111 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Coal mining produces large quantities of discard that is stockpiled in large dumps. This stockpiled material, termed coal discard, poses an environmental threat emphasising the need for appropriate bioremediation. Here, metagenomic analysis of the 16S rRNA from ten coal-degrading strains previously isolated from coal slurry from discard dumps and from the rhizosphere of diesel-contaminated sites was used to establish genetic relatedness to known plant growth-promoting (PGP) bacteria in the NCBI database. Measurement of indole and ammonium production and solubilisation of P and K were used to screen bacteria for PGP characteristics. BLAST analysis revealed ≥ 99% homology of six isolates with reference PGP strains of Bacillus, Escherichia, Citrobacter, Serratia, Exiguobacterium and Microbacterium, while two strains showed 94% and 91% homology with Proteus. The most competent PGP strains were Proteus strain ECCN 20b, Proteus strain ECCN 23b and Serratia strain ECCN 24b isolated from diesel-contaminated soil. In response to L-trp supplementation, the concentration of indolic compounds (measured as indole-3-acetic acid) increased. Production of ammonium and solubilisation of insoluble P by these strains was also apparent. Only Serratia strain ECCN 24b was capable of solubilising insoluble K. Production of indoles increased following exposure to increasing aliquots of coal discard, suggesting no negative effect of this material on indole production by these coal-degrading bacterial isolates and that these bacteria may indeed possess PGP characteristics. |
---|---|
ISSN: | 2227-9717 2227-9717 |
DOI: | 10.3390/pr8091111 |