Super connectivity of lexicographic product graphs
For a graph \(G\), \(k(G)\) denotes its connectivity. A graph is super connected if every minimum vertex-cut isolates a vertex. Also \(k_{1}\)-connectivity of a connected graph is the minimum number of vertices whose deletion gives a disconnected graph without isolated vertices. This paper provides...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-09 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For a graph \(G\), \(k(G)\) denotes its connectivity. A graph is super connected if every minimum vertex-cut isolates a vertex. Also \(k_{1}\)-connectivity of a connected graph is the minimum number of vertices whose deletion gives a disconnected graph without isolated vertices. This paper provides bounds for the super connectivity and \(k_{1}\)-connectivity of the lexicographic product of two graphs. |
---|---|
ISSN: | 2331-8422 |