Super connectivity of lexicographic product graphs

For a graph \(G\), \(k(G)\) denotes its connectivity. A graph is super connected if every minimum vertex-cut isolates a vertex. Also \(k_{1}\)-connectivity of a connected graph is the minimum number of vertices whose deletion gives a disconnected graph without isolated vertices. This paper provides...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-09
Hauptverfasser: Kamyab, Khalid, Ghasemi, Mohsen, Varmazyar, Rezvan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For a graph \(G\), \(k(G)\) denotes its connectivity. A graph is super connected if every minimum vertex-cut isolates a vertex. Also \(k_{1}\)-connectivity of a connected graph is the minimum number of vertices whose deletion gives a disconnected graph without isolated vertices. This paper provides bounds for the super connectivity and \(k_{1}\)-connectivity of the lexicographic product of two graphs.
ISSN:2331-8422