Room temperature processed in-situ carbon-coated vanadium carbide (VC@C) as a high capacity robust Li/Na battery anode material

3D carbide systems with their robust physical and mechanical properties have always attracted multiple application interests. In this report, we have synthesized a three-dimensional in-situ carbon coated cubic carbide, Vanadium Carbide (VC@C), by a very simple, scalable and cost-effective room tempe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbon (New York) 2020-05, Vol.161, p.108-116
Hauptverfasser: Mahajan, Mani, Roy, Kingshuk, Parmar, Swati, Singla, Gourav, Pandey, O.P., Singh, K., Vaidhyanathan, Ramanathan, Ogale, Satishchandra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:3D carbide systems with their robust physical and mechanical properties have always attracted multiple application interests. In this report, we have synthesized a three-dimensional in-situ carbon coated cubic carbide, Vanadium Carbide (VC@C), by a very simple, scalable and cost-effective room temperature mechano-chemical ball-milling procedure and researched its promise as effective anode material for Li and Na ion batteries. We have demonstrated that VC@C shows an impressive initial discharge/lithiation capacity of 1165 mAh g−1 with a high reversible capacity of 640 mAh g−1 after 100 charge-discharge cycles at an applied current density of 0.1 A g−1. We have also found that this material renders a very promising rate performance with significantly low capacity drop after exposing it to variable current densities ranging from 0.05 A g−1 to 2 A g−1 with an excellent stability up to 1000 cycles owing to its structural robustness, as verified by post-cycling characterizations. A Li-ion full cell study using LiCoO2 as cathode also showed excellent promise in terms of practical application demonstrating a reversible capacity of 95 mAh g−1 after 100 cycles. Even for Na insertion/de-insertion VC@C shows a clear promise in terms of capacity, cyclic stability and rate performance. [Display omitted]
ISSN:0008-6223
1873-3891
DOI:10.1016/j.carbon.2020.01.057