Periodic Time-Optimal Controls on Two-Step Free-Nilpotent Lie Groups

For two-step free nilpotent Lie algebras, we describe symplectic foliations and Casimir functions. A left-invariant time-optimal problem is considered in which the set of admissible controls is given by a strictly convex compact set in the first layer of the Lie algebra that contains the origin in i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Doklady. Mathematics 2020-05, Vol.101 (3), p.262-264
1. Verfasser: Sachkov, Yu. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For two-step free nilpotent Lie algebras, we describe symplectic foliations and Casimir functions. A left-invariant time-optimal problem is considered in which the set of admissible controls is given by a strictly convex compact set in the first layer of the Lie algebra that contains the origin in its interior. We describe integrals for the vertical subsystem of the Hamiltonian system of the Pontryagin maximum principle. The properties of solutions to this system for low ranks of the Poisson bivector are described.
ISSN:1064-5624
1531-8362
DOI:10.1134/S1064562420030187