Electron-beam-driven chemical processes during liquid phase transmission electron microscopy
Liquid phase (or liquid cell) transmission electron microscopy (LP-TEM) has been established as a powerful tool for observing dynamic processes in liquids at nanometer to atomic length scales. However, the simple act of observation using electrons irreversibly alters the nature of the sample. A clea...
Gespeichert in:
Veröffentlicht in: | MRS Bulletin 2020-09, Vol.45 (9), p.746-753 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Liquid phase (or liquid cell) transmission electron microscopy (LP-TEM) has been established as a powerful tool for observing dynamic processes in liquids at nanometer to atomic length scales. However, the simple act of observation using electrons irreversibly alters the nature of the sample. A clear understanding of electron-beam-driven processes during LP-TEM is required to interpret in situ observations and utilize the electron beam as a stimulus to drive nanoscale dynamic processes. In this article, we discuss recent advances toward understanding, quantifying, mitigating, and harnessing electron-beam-driven chemical processes occurring during LP-TEM. We highlight progress in several research areas, including modeling electron-beam-induced radiolysis near interfaces, electron-beam-induced nanocrystal formation, and radiation damage of soft materials and biomolecules. |
---|---|
ISSN: | 0883-7694 1938-1425 |
DOI: | 10.1557/mrs.2020.227 |