Large Eddy Simulations of Reactive Mixing in Jet Reactors of Varied Geometry and Size

We applied large eddy simulation (LES) to predict the course of reactive mixing carried out in confined impinging jet reactors (CIJR). The reactive mixing process was studied in a wide range of flow rates both experimentally and numerically using computational fluid dynamics (CFD). We compared sever...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Processes 2020-09, Vol.8 (9), p.1101
Hauptverfasser: Wojtas, Krzysztof, Orciuch, Wojciech, Makowski, Łukasz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We applied large eddy simulation (LES) to predict the course of reactive mixing carried out in confined impinging jet reactors (CIJR). The reactive mixing process was studied in a wide range of flow rates both experimentally and numerically using computational fluid dynamics (CFD). We compared several different reactor geometries made in different sizes in terms of both reaction yields and mixing efficiency. Our LES model predictions were validated using experimental data for the tracer concentration distribution and fast parallel chemical test reactions, and compared with the k-ε model supplemented with the turbulent mixer model. We found that the mixing efficiency was not affected by the flow rate only at the highest tested Reynolds numbers. The experimental results and LES predictions were found to be in good agreement for all reactor geometries and operating conditions, while the k-ε model well predicted the trend of changes. The CFD method used, i.e., the modeling approach using closure hypothesis, was positively validated as a useful tool in reactor design. This method allowed us to distinguish the best reactors in terms of mixing efficiency (T-mixer III and V-mixer III) and could provide insights for scale-up and application in different processes.
ISSN:2227-9717
2227-9717
DOI:10.3390/pr8091101