Almost Global Existence for the 3D Prandtl Boundary Layer Equations

In this paper, we prove the almost global existence of classical solutions to the 3D Prandtl system with the initial data which lie within ε of a stable shear flow. Using anisotropic Littlewood-Paley energy estimates in tangentially analytic norms and introducing new linearly-good unknowns, we prove...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta applicandae mathematicae 2020-10, Vol.169 (1), p.383-410
Hauptverfasser: Lin, Xueyun, Zhang, Ting
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we prove the almost global existence of classical solutions to the 3D Prandtl system with the initial data which lie within ε of a stable shear flow. Using anisotropic Littlewood-Paley energy estimates in tangentially analytic norms and introducing new linearly-good unknowns, we prove that the 3D Prandtl system has a unique solution with the lifespan of which is greater than exp ( ε − 1 / log ( ε − 1 ) ) . This result extends the work obtained by Ignatova and Vicol (Arch. Ration. Mech. Anal. 2:809–848, 2016 ) on the 2D Prandtl equations to the three-dimensional setting.
ISSN:0167-8019
1572-9036
DOI:10.1007/s10440-019-00303-y