Corners and fundamental corners for the groups Spin(n,1)

We study corners and fundamental corners of the irreducible representations of the groups G=Spin(n,1) that are not elementary, i.e. that are equivalent to subquotients of reducible nonunitary principal series representations. For even n we obtain results in a way analogous to the results in [10] for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-09
Hauptverfasser: Kovacevic, Domagoj, Kraljevic, Hrvoje
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study corners and fundamental corners of the irreducible representations of the groups G=Spin(n,1) that are not elementary, i.e. that are equivalent to subquotients of reducible nonunitary principal series representations. For even n we obtain results in a way analogous to the results in [10] for the groups SU(n,1). Especially, we again get a bijection between the nonelementary part \(\hat{G}^0\) of the unitary dual \(\hat{G}\) and the unitary dual \(\hat{K}.\) In the case of odd n we get a bijection between \(\hat{G}^0\) and a tru subset of \(\hat{K}.\)
ISSN:2331-8422