Exploring the characteristics, performance, and modification of Matrimid for development of thin‐film composite and thin‐film nanocomposite reverse osmosis membranes
Reverse osmosis (RO) membrane technology is widely employed to address the demands for freshwater. In this study, fabrication and performance evaluation of customized RO membranes comprised of Matrimid and polyacrylonitrile (PAN) is carried out. While exploring adoption of slip coating procedure, th...
Gespeichert in:
Veröffentlicht in: | Polymers for advanced technologies 2020-10, Vol.31 (10), p.2209-2221 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Reverse osmosis (RO) membrane technology is widely employed to address the demands for freshwater. In this study, fabrication and performance evaluation of customized RO membranes comprised of Matrimid and polyacrylonitrile (PAN) is carried out. While exploring adoption of slip coating procedure, the effects of various modification techniques including incorporation of TiO2 nanoparticles and polyethylene glycol (PEG) into the skin layer as well as cross‐linking were investigated. The individual and combined effects of parameters on membrane morphology, surface characteristics and performance were also examined. Despite the distinctive characteristics of involved materials, delamination‐free composite membranes were successfully formed with an intimate contact at the interface of two layers. The results also indicated that increasing concentration of Matrimid in dope solution led to increase in membrane thickness and consequently decline in water flux. In the best case, membrane prepared using 1 wt.% Matrimid in dope exhibited water flux of 0.98 LMH and NaCl rejection of 95.7%. Also, incorporation of 3 wt.% TiO2 nanoparticles offered membranes with improved water flux of 1.37 LMH and salt rejection of 95.8%. On the other hand, water flux and salt rejection in membranes containing 5 wt.% PEG were 1.18 LMH and 96.2%, respectively. The co‐presence of both nanoparticles and PEG provided more insights about the contributing factors in tuned membranes. Modification of skin layer by cross‐linking significantly improved salt rejection at the expense of water flux. The results are scientifically interpreted and compared to the values reported in literature. |
---|---|
ISSN: | 1042-7147 1099-1581 |
DOI: | 10.1002/pat.4941 |