Laver Trees in the Generalized Baire Space
We prove that any suitable generalization of Laver forcing to the space \( \kappa^\kappa\), for uncountable regular \(\kappa\), necessarily adds a Cohen \(\kappa\)-real. We also study a dichotomy and an ideal naturally related to generalized Laver forcing. Using this dichotomy, we prove the followin...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-09 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that any suitable generalization of Laver forcing to the space \( \kappa^\kappa\), for uncountable regular \(\kappa\), necessarily adds a Cohen \(\kappa\)-real. We also study a dichotomy and an ideal naturally related to generalized Laver forcing. Using this dichotomy, we prove the following stronger result: if \( \kappa^{ |
---|---|
ISSN: | 2331-8422 |