Point-to-line last passage percolation and the invariant measure of a system of reflecting Brownian motions
This paper proves an equality in law between the invariant measure of a reflected system of Brownian motions and a vector of point-to-line last passage percolation times in a discrete random environment. A consequence describes the distribution of the all-time supremum of Dyson Brownian motion with...
Gespeichert in:
Veröffentlicht in: | Probability theory and related fields 2020-10, Vol.178 (1-2), p.121-171 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper proves an equality in law between the invariant measure of a reflected system of Brownian motions and a vector of point-to-line last passage percolation times in a discrete random environment. A consequence describes the distribution of the all-time supremum of Dyson Brownian motion with drift. A finite temperature version relates the point-to-line partition functions of two directed polymers, with an inverse-gamma and a Brownian environment, and generalises Dufresne’s identity. Our proof introduces an interacting system of Brownian motions with an invariant measure given by a field of point-to-line log partition functions for the log-gamma polymer. |
---|---|
ISSN: | 0178-8051 1432-2064 |
DOI: | 10.1007/s00440-020-00972-z |