In vivo time-domain diffuse correlation spectroscopy above the water absorption peak
Time-domain diffuse correlation spectroscopy (TD-DCS) is a newly emerging optical technique that exploits pulsed, yet coherent light to non-invasively resolve the blood flow in depth. In this work, we have explored TD-DCS at longer wavelengths compared to those previously used in literature i.e., 75...
Gespeichert in:
Veröffentlicht in: | Optics letters 2020-07, Vol.45 (13), p.3377-3380 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Time-domain diffuse correlation spectroscopy (TD-DCS) is a newly emerging optical technique that exploits pulsed, yet coherent light to non-invasively resolve the blood flow in depth. In this work, we have explored TD-DCS at longer wavelengths compared to those previously used in literature i.e., 750-850 nm). The measurements were performed using a custom-made titanium-sapphire mode-locked laser, operating at 1000 nm, and an InGaAs photomultiplier as a detector. Tissue-mimicking phantoms and in vivo measurements during arterial arm cuff occlusion in n = 4 adult volunteers were performed to demonstrate the proof of concept. We obtained a good signal-to-noise ratio, following the hemodynamics continuously with a relatively fast (1 Hz) sampling rate. In all the experiments, the auto-correlation functions show a decay rate approximately five-fold slower compared to shorter wavelengths. This work demonstrates the feasibility of in vivo TD-DCS in this spectral region and its potentiality for biomedical applications. (C) 2020 Optical Society of America |
---|---|
ISSN: | 0146-9592 1539-4794 |
DOI: | 10.1364/OL.392355 |