Enhanced electrochemical performance of lithium-rich layered oxide cathodes by a facile self-template method for lithium-ion batteries
Lithium-rich layered oxide cathode material Li1.2Ni0.13Co0.13Mn0.54O2 has been successfully synthesized via a self-template method followed with sol-gel reaction, microspheres consisting of three-dimensional (3D) nanothorn MnO2 are used as the template and Mn source. The as-prepared sample (denoted...
Gespeichert in:
Veröffentlicht in: | Solid state ionics 2020-05, Vol.348, p.115281, Article 115281 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 115281 |
container_title | Solid state ionics |
container_volume | 348 |
creator | Xu, Lishuang Meng, Junxia Yang, Puheng Xu, Huaizhe Zhang, Shichao |
description | Lithium-rich layered oxide cathode material Li1.2Ni0.13Co0.13Mn0.54O2 has been successfully synthesized via a self-template method followed with sol-gel reaction, microspheres consisting of three-dimensional (3D) nanothorn MnO2 are used as the template and Mn source. The as-prepared sample (denoted as LNCM-T) exhibits well-layered structure and high crystallinity, which is confirmed by XRD and HRTEM. The results of electrochemical performances show that the LNCM-T sample has excellent high-rate capability with a discharge capacity of 159.7 mA h g−1 at a current density of 1250 mA g−1. Besides, it delivers a high initial Coulombic efficiency of 84.3% with a discharge capacity of 243.8 mA h g−1 at room temperature. The remarkable cycling stability and excellent rate capability of LNCM-T sample are ascribed to the enhanced layered structural stability, short lithium-ion diffusion path and reduced charge transfer resistance.
•A novel cathode material are synthesized through a facile route.•The sample LNCM-T showed improved initial Coulombic efficiency and remarkable rate capability.•The sample LNCM-T with nanometer particle size showed excellent dynamic performance. |
doi_str_mv | 10.1016/j.ssi.2020.115281 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2440489588</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167273819309506</els_id><sourcerecordid>2440489588</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-aa68f3aae4bbd6a8e877e1c8b612ec19634095308043192df87d35bc792766063</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouH78AG8Bz12TtE1SPMmyfsCCFz2HNJ3SlLZZk6y4f8DfbUrFo6dhmPd9Z-ZB6IaSNSWU3_XrEOyaEZZ6WjJJT9CKSsEywWV1ilZJIzImcnmOLkLoCSE8l3yFvrdTpycDDYYBTPTOdDBaowe8B986P85D7Fo82NjZw5h5azo86CP45HFftgFsdOxcAwHXR6xxq40dAAcY2izCuB90BDzCLMEp8C_IugnXOkbwFsIVOmv1EOD6t16i98ft2-Y5270-vWwedpnJWRkzrblsc62hqOuGawlSCKBG1pwyMLTieUGqMieSFDmtWNNK0eRlbUTFBOfp5Ut0u-Tuvfs4QIiqdwc_pZWKFQUpZFVKmVR0URnvQvDQqr23o_ZHRYmacateJdxqxq0W3Mlzv3ggnf9pwatgLMxkrU9gVePsP-4fKwCJ9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440489588</pqid></control><display><type>article</type><title>Enhanced electrochemical performance of lithium-rich layered oxide cathodes by a facile self-template method for lithium-ion batteries</title><source>Elsevier ScienceDirect Journals</source><creator>Xu, Lishuang ; Meng, Junxia ; Yang, Puheng ; Xu, Huaizhe ; Zhang, Shichao</creator><creatorcontrib>Xu, Lishuang ; Meng, Junxia ; Yang, Puheng ; Xu, Huaizhe ; Zhang, Shichao</creatorcontrib><description>Lithium-rich layered oxide cathode material Li1.2Ni0.13Co0.13Mn0.54O2 has been successfully synthesized via a self-template method followed with sol-gel reaction, microspheres consisting of three-dimensional (3D) nanothorn MnO2 are used as the template and Mn source. The as-prepared sample (denoted as LNCM-T) exhibits well-layered structure and high crystallinity, which is confirmed by XRD and HRTEM. The results of electrochemical performances show that the LNCM-T sample has excellent high-rate capability with a discharge capacity of 159.7 mA h g−1 at a current density of 1250 mA g−1. Besides, it delivers a high initial Coulombic efficiency of 84.3% with a discharge capacity of 243.8 mA h g−1 at room temperature. The remarkable cycling stability and excellent rate capability of LNCM-T sample are ascribed to the enhanced layered structural stability, short lithium-ion diffusion path and reduced charge transfer resistance.
•A novel cathode material are synthesized through a facile route.•The sample LNCM-T showed improved initial Coulombic efficiency and remarkable rate capability.•The sample LNCM-T with nanometer particle size showed excellent dynamic performance.</description><identifier>ISSN: 0167-2738</identifier><identifier>EISSN: 1872-7689</identifier><identifier>DOI: 10.1016/j.ssi.2020.115281</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Batteries ; Cathodes ; Charge transfer ; Chemical precipitation ; Diffusion ; Diffusion layers ; Discharge ; Electrochemical analysis ; Electrochemical performance ; Electrode materials ; Heat transfer ; Ion diffusion ; Li-rich cathode material ; Lithium ; Lithium ion battery ; Lithium-ion batteries ; Manganese dioxide ; Microspheres ; Nanoscale structure ; Rechargeable batteries ; Room temperature ; Sol-gel processes ; Structural stability ; Template method</subject><ispartof>Solid state ionics, 2020-05, Vol.348, p.115281, Article 115281</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV May 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-aa68f3aae4bbd6a8e877e1c8b612ec19634095308043192df87d35bc792766063</citedby><cites>FETCH-LOGICAL-c325t-aa68f3aae4bbd6a8e877e1c8b612ec19634095308043192df87d35bc792766063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167273819309506$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Xu, Lishuang</creatorcontrib><creatorcontrib>Meng, Junxia</creatorcontrib><creatorcontrib>Yang, Puheng</creatorcontrib><creatorcontrib>Xu, Huaizhe</creatorcontrib><creatorcontrib>Zhang, Shichao</creatorcontrib><title>Enhanced electrochemical performance of lithium-rich layered oxide cathodes by a facile self-template method for lithium-ion batteries</title><title>Solid state ionics</title><description>Lithium-rich layered oxide cathode material Li1.2Ni0.13Co0.13Mn0.54O2 has been successfully synthesized via a self-template method followed with sol-gel reaction, microspheres consisting of three-dimensional (3D) nanothorn MnO2 are used as the template and Mn source. The as-prepared sample (denoted as LNCM-T) exhibits well-layered structure and high crystallinity, which is confirmed by XRD and HRTEM. The results of electrochemical performances show that the LNCM-T sample has excellent high-rate capability with a discharge capacity of 159.7 mA h g−1 at a current density of 1250 mA g−1. Besides, it delivers a high initial Coulombic efficiency of 84.3% with a discharge capacity of 243.8 mA h g−1 at room temperature. The remarkable cycling stability and excellent rate capability of LNCM-T sample are ascribed to the enhanced layered structural stability, short lithium-ion diffusion path and reduced charge transfer resistance.
•A novel cathode material are synthesized through a facile route.•The sample LNCM-T showed improved initial Coulombic efficiency and remarkable rate capability.•The sample LNCM-T with nanometer particle size showed excellent dynamic performance.</description><subject>Batteries</subject><subject>Cathodes</subject><subject>Charge transfer</subject><subject>Chemical precipitation</subject><subject>Diffusion</subject><subject>Diffusion layers</subject><subject>Discharge</subject><subject>Electrochemical analysis</subject><subject>Electrochemical performance</subject><subject>Electrode materials</subject><subject>Heat transfer</subject><subject>Ion diffusion</subject><subject>Li-rich cathode material</subject><subject>Lithium</subject><subject>Lithium ion battery</subject><subject>Lithium-ion batteries</subject><subject>Manganese dioxide</subject><subject>Microspheres</subject><subject>Nanoscale structure</subject><subject>Rechargeable batteries</subject><subject>Room temperature</subject><subject>Sol-gel processes</subject><subject>Structural stability</subject><subject>Template method</subject><issn>0167-2738</issn><issn>1872-7689</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouH78AG8Bz12TtE1SPMmyfsCCFz2HNJ3SlLZZk6y4f8DfbUrFo6dhmPd9Z-ZB6IaSNSWU3_XrEOyaEZZ6WjJJT9CKSsEywWV1ilZJIzImcnmOLkLoCSE8l3yFvrdTpycDDYYBTPTOdDBaowe8B986P85D7Fo82NjZw5h5azo86CP45HFftgFsdOxcAwHXR6xxq40dAAcY2izCuB90BDzCLMEp8C_IugnXOkbwFsIVOmv1EOD6t16i98ft2-Y5270-vWwedpnJWRkzrblsc62hqOuGawlSCKBG1pwyMLTieUGqMieSFDmtWNNK0eRlbUTFBOfp5Ut0u-Tuvfs4QIiqdwc_pZWKFQUpZFVKmVR0URnvQvDQqr23o_ZHRYmacateJdxqxq0W3Mlzv3ggnf9pwatgLMxkrU9gVePsP-4fKwCJ9A</recordid><startdate>202005</startdate><enddate>202005</enddate><creator>Xu, Lishuang</creator><creator>Meng, Junxia</creator><creator>Yang, Puheng</creator><creator>Xu, Huaizhe</creator><creator>Zhang, Shichao</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>202005</creationdate><title>Enhanced electrochemical performance of lithium-rich layered oxide cathodes by a facile self-template method for lithium-ion batteries</title><author>Xu, Lishuang ; Meng, Junxia ; Yang, Puheng ; Xu, Huaizhe ; Zhang, Shichao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-aa68f3aae4bbd6a8e877e1c8b612ec19634095308043192df87d35bc792766063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Batteries</topic><topic>Cathodes</topic><topic>Charge transfer</topic><topic>Chemical precipitation</topic><topic>Diffusion</topic><topic>Diffusion layers</topic><topic>Discharge</topic><topic>Electrochemical analysis</topic><topic>Electrochemical performance</topic><topic>Electrode materials</topic><topic>Heat transfer</topic><topic>Ion diffusion</topic><topic>Li-rich cathode material</topic><topic>Lithium</topic><topic>Lithium ion battery</topic><topic>Lithium-ion batteries</topic><topic>Manganese dioxide</topic><topic>Microspheres</topic><topic>Nanoscale structure</topic><topic>Rechargeable batteries</topic><topic>Room temperature</topic><topic>Sol-gel processes</topic><topic>Structural stability</topic><topic>Template method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Lishuang</creatorcontrib><creatorcontrib>Meng, Junxia</creatorcontrib><creatorcontrib>Yang, Puheng</creatorcontrib><creatorcontrib>Xu, Huaizhe</creatorcontrib><creatorcontrib>Zhang, Shichao</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Solid state ionics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Lishuang</au><au>Meng, Junxia</au><au>Yang, Puheng</au><au>Xu, Huaizhe</au><au>Zhang, Shichao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced electrochemical performance of lithium-rich layered oxide cathodes by a facile self-template method for lithium-ion batteries</atitle><jtitle>Solid state ionics</jtitle><date>2020-05</date><risdate>2020</risdate><volume>348</volume><spage>115281</spage><pages>115281-</pages><artnum>115281</artnum><issn>0167-2738</issn><eissn>1872-7689</eissn><abstract>Lithium-rich layered oxide cathode material Li1.2Ni0.13Co0.13Mn0.54O2 has been successfully synthesized via a self-template method followed with sol-gel reaction, microspheres consisting of three-dimensional (3D) nanothorn MnO2 are used as the template and Mn source. The as-prepared sample (denoted as LNCM-T) exhibits well-layered structure and high crystallinity, which is confirmed by XRD and HRTEM. The results of electrochemical performances show that the LNCM-T sample has excellent high-rate capability with a discharge capacity of 159.7 mA h g−1 at a current density of 1250 mA g−1. Besides, it delivers a high initial Coulombic efficiency of 84.3% with a discharge capacity of 243.8 mA h g−1 at room temperature. The remarkable cycling stability and excellent rate capability of LNCM-T sample are ascribed to the enhanced layered structural stability, short lithium-ion diffusion path and reduced charge transfer resistance.
•A novel cathode material are synthesized through a facile route.•The sample LNCM-T showed improved initial Coulombic efficiency and remarkable rate capability.•The sample LNCM-T with nanometer particle size showed excellent dynamic performance.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ssi.2020.115281</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-2738 |
ispartof | Solid state ionics, 2020-05, Vol.348, p.115281, Article 115281 |
issn | 0167-2738 1872-7689 |
language | eng |
recordid | cdi_proquest_journals_2440489588 |
source | Elsevier ScienceDirect Journals |
subjects | Batteries Cathodes Charge transfer Chemical precipitation Diffusion Diffusion layers Discharge Electrochemical analysis Electrochemical performance Electrode materials Heat transfer Ion diffusion Li-rich cathode material Lithium Lithium ion battery Lithium-ion batteries Manganese dioxide Microspheres Nanoscale structure Rechargeable batteries Room temperature Sol-gel processes Structural stability Template method |
title | Enhanced electrochemical performance of lithium-rich layered oxide cathodes by a facile self-template method for lithium-ion batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T23%3A57%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20electrochemical%20performance%20of%20lithium-rich%20layered%20oxide%20cathodes%20by%20a%20facile%20self-template%20method%20for%20lithium-ion%20batteries&rft.jtitle=Solid%20state%20ionics&rft.au=Xu,%20Lishuang&rft.date=2020-05&rft.volume=348&rft.spage=115281&rft.pages=115281-&rft.artnum=115281&rft.issn=0167-2738&rft.eissn=1872-7689&rft_id=info:doi/10.1016/j.ssi.2020.115281&rft_dat=%3Cproquest_cross%3E2440489588%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2440489588&rft_id=info:pmid/&rft_els_id=S0167273819309506&rfr_iscdi=true |