Enhanced electrochemical performance of lithium-rich layered oxide cathodes by a facile self-template method for lithium-ion batteries
Lithium-rich layered oxide cathode material Li1.2Ni0.13Co0.13Mn0.54O2 has been successfully synthesized via a self-template method followed with sol-gel reaction, microspheres consisting of three-dimensional (3D) nanothorn MnO2 are used as the template and Mn source. The as-prepared sample (denoted...
Gespeichert in:
Veröffentlicht in: | Solid state ionics 2020-05, Vol.348, p.115281, Article 115281 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Lithium-rich layered oxide cathode material Li1.2Ni0.13Co0.13Mn0.54O2 has been successfully synthesized via a self-template method followed with sol-gel reaction, microspheres consisting of three-dimensional (3D) nanothorn MnO2 are used as the template and Mn source. The as-prepared sample (denoted as LNCM-T) exhibits well-layered structure and high crystallinity, which is confirmed by XRD and HRTEM. The results of electrochemical performances show that the LNCM-T sample has excellent high-rate capability with a discharge capacity of 159.7 mA h g−1 at a current density of 1250 mA g−1. Besides, it delivers a high initial Coulombic efficiency of 84.3% with a discharge capacity of 243.8 mA h g−1 at room temperature. The remarkable cycling stability and excellent rate capability of LNCM-T sample are ascribed to the enhanced layered structural stability, short lithium-ion diffusion path and reduced charge transfer resistance.
•A novel cathode material are synthesized through a facile route.•The sample LNCM-T showed improved initial Coulombic efficiency and remarkable rate capability.•The sample LNCM-T with nanometer particle size showed excellent dynamic performance. |
---|---|
ISSN: | 0167-2738 1872-7689 |
DOI: | 10.1016/j.ssi.2020.115281 |