Magnetic Properties of Layered Ferrimagnetic Structures Based on Gd and Transition 3d Metals
Magnetic properties of layered structures based on transition and rare-earth metals (TMs and REMs) such as Fe and Gd have attracted attention of researchers since 1990s. These materials are artificial ferrimagnets with reach magnetic phase diagrams, which make it possible to realize a wide spectrum...
Gespeichert in:
Veröffentlicht in: | Journal of experimental and theoretical physics 2020-07, Vol.131 (1), p.149-159 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Magnetic properties of layered structures based on transition and rare-earth metals (TMs and REMs) such as Fe and Gd have attracted attention of researchers since 1990s. These materials are artificial ferrimagnets with reach magnetic phase diagrams, which make it possible to realize a wide spectrum of predefined properties. In recent years, a new surge of the interest in such systems was evoked by observations of new peculiar dynamic effects in these materials, including optical magnetization reversal and ultrafast motion of domain walls, as well as the possibility of realization of skyrmion magnetic states. In this article, a brief review of the most interesting features of magnetism and magnetic dynamics of layered ferromagnetic TM/REM structures is presented. The results of our investigation concerning Fe/Gd superlattices and the effects of Cr interlayers on their magnetic properties are reported. The surface cant of the magnetization in these structures has been observed directly using the magnetooptical Kerr effect, and the magnetic phase diagram of the system has been obtained. We have analyzed peculiarities of nonuniform modes of magnetic oscillations excited in the Fe/Gd superlattice by the ferromagnetic resonance method. The possibility of sign reversal of the exchange interaction of Fe and Gd layers from antiferromagnetic to ferromagnetic type upon the introduction of Cr interlayers between them has been demonstrated. |
---|---|
ISSN: | 1063-7761 1090-6509 |
DOI: | 10.1134/S1063776120070031 |