A Mathematical Model and Self-Adaptive NSGA-II for a Multiobjective IPPS Problem Subject to Delivery Time
Process planning and scheduling are two important components of manufacturing systems. This paper deals with a multiobjective just-in-time integrated process planning and scheduling (MOJIT-IPPS) problem. Delivery time and machine workload are considered to make IPPS problem more suitable for manufac...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2020, Vol.2020 (2020), p.1-12 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Process planning and scheduling are two important components of manufacturing systems. This paper deals with a multiobjective just-in-time integrated process planning and scheduling (MOJIT-IPPS) problem. Delivery time and machine workload are considered to make IPPS problem more suitable for manufacturing environments. The earliness/tardiness penalty, maximum machine workload, and total machine workload are objectives that are minimized. The decoding method is a crucial part that significantly influences the scheduling results. We develop a self-adaptive decoding method to obtain better results. A nondominated sorting genetic algorithm with self-adaptive decoding (SD-NSGA-II) is proposed for solving MOJIT-IPPS. Finally, the model and algorithm are proven through an example. Furthermore, different scale examples are tested to prove the good performance of the proposed method. |
---|---|
ISSN: | 1024-123X 1563-5147 |
DOI: | 10.1155/2020/6012737 |