Multipopulation Genetic Algorithm Based on GPU for Solving TSP Problem

A GPU-based Multigroup Genetic Algorithm was proposed, which parallelized the traditional genetic algorithm with a coarse-grained architecture island model. The original population is divided into several subpopulations to simulate different living environments, thus increasing species richness. For...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2020, Vol.2020 (2020), p.1-8
Hauptverfasser: Wang, Wanqiong, Li, Jia, Ergesh, Tohtonur, Ye, Xinchen, Wang, Jie, Nie, Jun, Zhang, Hailong, Wang, Boqun, Zhang, Meng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A GPU-based Multigroup Genetic Algorithm was proposed, which parallelized the traditional genetic algorithm with a coarse-grained architecture island model. The original population is divided into several subpopulations to simulate different living environments, thus increasing species richness. For each subpopulation, different mutation rates were adopted, and the crossover results were optimized by combining the crossover method based on distance. The adaptive mutation strategy based on the number of generations was adopted to prevent the algorithm from falling into the local optimal solution. An elite strategy was adopted for outstanding individuals to retain their superior genes. The algorithm was implemented with CUDA/C, combined with the powerful parallel computing capabilities of GPUs, which greatly improved the computing efficiency. It provided a new solution to the TSP problem.
ISSN:1024-123X
1563-5147
DOI:10.1155/2020/1398595