Deep Learning Algorithm for Brain-Computer Interface

Electroencephalography-(EEG-) based control is a noninvasive technique which employs brain signals to control electrical devices/circuits. Currently, the brain-computer interface (BCI) systems provide two types of signals, raw signals and logic state signals. The latter signals are used to turn on/o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific programming 2020, Vol.2020 (2020), p.1-12
Hauptverfasser: Usman, Muhammad Waleed, Jamil, Noreen, Naeem, M. Asif, Mansoor, Asif
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Electroencephalography-(EEG-) based control is a noninvasive technique which employs brain signals to control electrical devices/circuits. Currently, the brain-computer interface (BCI) systems provide two types of signals, raw signals and logic state signals. The latter signals are used to turn on/off the devices. In this paper, the capabilities of BCI systems are explored, and a survey is conducted how to extend and enhance the reliability and accuracy of the BCI systems. A structured overview was provided which consists of the data acquisition, feature extraction, and classification algorithm methods used by different researchers in the past few years. Some classification algorithms for EEG-based BCI systems are adaptive classifiers, tensor classifiers, transfer learning approach, and deep learning, as well as some miscellaneous techniques. Based on our assessment, we generally concluded that, through adaptive classifiers, accurate results are acquired as compared to the static classification techniques. Deep learning techniques were developed to achieve the desired objectives and their real-time implementation as compared to other algorithms.
ISSN:1058-9244
1875-919X
DOI:10.1155/2020/5762149