Extremal Properties of Logarithmic Derivatives of Polynomials

We study extremal properties of simple partial fractions ρ n (i.e., the logarithmic derivatives of algebraic polynomials of degree n ) on a segment and on a circle. We prove that for any a > 1 the poles of a fraction ρ n whose sup norm does not exceed ln(1 + a − n ) on [−1, 1] lie in the exterior...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2020-10, Vol.250 (1), p.1-9
1. Verfasser: Komarov, M. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue 1
container_start_page 1
container_title Journal of mathematical sciences (New York, N.Y.)
container_volume 250
creator Komarov, M. A.
description We study extremal properties of simple partial fractions ρ n (i.e., the logarithmic derivatives of algebraic polynomials of degree n ) on a segment and on a circle. We prove that for any a > 1 the poles of a fraction ρ n whose sup norm does not exceed ln(1 + a − n ) on [−1, 1] lie in the exterior of the ellipse with foci ±1 and sum of half-axes a . For a real-valued analytic function f bounded in the ellipse with a = 3 + 2 2 we show that if a real-valued simple partial fraction of order not greater than n is least deviating from f in the C ([−1, 1])-metric, then such a fraction is unique and is characterized by an alternance of n + 1 points in the segment [−1, 1].
doi_str_mv 10.1007/s10958-020-04991-y
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2440296213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A684933926</galeid><sourcerecordid>A684933926</sourcerecordid><originalsourceid>FETCH-LOGICAL-c512y-c11b8c34947c78b27b3af3a24c51f3acd3d126c09d6f17fa48ac56463b80223a3</originalsourceid><addsrcrecordid>eNqNkktLxDAUhYso-PwDrgZcuYgmuWnSLFyIbxhQfKxDJpPWSNuMSUfsvzdawRkYVLK44d7vnAvJybJ9go8IxuI4EizzAmGKEWZSEtSvZVskF4AKIfP1dMeCIgDBNrPtGF9wEvECtrKTi_cu2EbXo7vgZzZ0zsaRL0djX-nguufGmdG5De5Nd-5tGN35um9943Qdd7ONMhW79113sqfLi8ezazS-vbo5Ox0jkxPaI0PIpDDAJBNGFBMqJqBL0JSlcapmClNCucFyyksiSs0KbXLOOEwKTClo2MkOBt9Z8K9zGzv14uehTSsVZQxTySmBH6rStVWuLX0XtGlcNOpUUM4xQJ7_SvGCSQBJeaLQCqqyrQ269q0tXWovuf6HX_Q_WsGnM7XpyVcu-JdgccPhkiAxnX3vKj2PUd083C-b_8Uu-tKBNcHHGGypZsE1OvSKYPUZRjWEUaUwqq8wqj6JYBDFBLeVDT8f-IvqA51c3DA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440296213</pqid></control><display><type>article</type><title>Extremal Properties of Logarithmic Derivatives of Polynomials</title><source>SpringerLink Journals - AutoHoldings</source><creator>Komarov, M. A.</creator><creatorcontrib>Komarov, M. A.</creatorcontrib><description>We study extremal properties of simple partial fractions ρ n (i.e., the logarithmic derivatives of algebraic polynomials of degree n ) on a segment and on a circle. We prove that for any a &gt; 1 the poles of a fraction ρ n whose sup norm does not exceed ln(1 + a − n ) on [−1, 1] lie in the exterior of the ellipse with foci ±1 and sum of half-axes a . For a real-valued analytic function f bounded in the ellipse with a = 3 + 2 2 we show that if a real-valued simple partial fraction of order not greater than n is least deviating from f in the C ([−1, 1])-metric, then such a fraction is unique and is characterized by an alternance of n + 1 points in the segment [−1, 1].</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-020-04991-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analytic functions ; Derivatives ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Polynomials</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2020-10, Vol.250 (1), p.1-9</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c512y-c11b8c34947c78b27b3af3a24c51f3acd3d126c09d6f17fa48ac56463b80223a3</citedby><cites>FETCH-LOGICAL-c512y-c11b8c34947c78b27b3af3a24c51f3acd3d126c09d6f17fa48ac56463b80223a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10958-020-04991-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10958-020-04991-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Komarov, M. A.</creatorcontrib><title>Extremal Properties of Logarithmic Derivatives of Polynomials</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>We study extremal properties of simple partial fractions ρ n (i.e., the logarithmic derivatives of algebraic polynomials of degree n ) on a segment and on a circle. We prove that for any a &gt; 1 the poles of a fraction ρ n whose sup norm does not exceed ln(1 + a − n ) on [−1, 1] lie in the exterior of the ellipse with foci ±1 and sum of half-axes a . For a real-valued analytic function f bounded in the ellipse with a = 3 + 2 2 we show that if a real-valued simple partial fraction of order not greater than n is least deviating from f in the C ([−1, 1])-metric, then such a fraction is unique and is characterized by an alternance of n + 1 points in the segment [−1, 1].</description><subject>Analytic functions</subject><subject>Derivatives</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Polynomials</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNkktLxDAUhYso-PwDrgZcuYgmuWnSLFyIbxhQfKxDJpPWSNuMSUfsvzdawRkYVLK44d7vnAvJybJ9go8IxuI4EizzAmGKEWZSEtSvZVskF4AKIfP1dMeCIgDBNrPtGF9wEvECtrKTi_cu2EbXo7vgZzZ0zsaRL0djX-nguufGmdG5De5Nd-5tGN35um9943Qdd7ONMhW79113sqfLi8ezazS-vbo5Ox0jkxPaI0PIpDDAJBNGFBMqJqBL0JSlcapmClNCucFyyksiSs0KbXLOOEwKTClo2MkOBt9Z8K9zGzv14uehTSsVZQxTySmBH6rStVWuLX0XtGlcNOpUUM4xQJ7_SvGCSQBJeaLQCqqyrQ269q0tXWovuf6HX_Q_WsGnM7XpyVcu-JdgccPhkiAxnX3vKj2PUd083C-b_8Uu-tKBNcHHGGypZsE1OvSKYPUZRjWEUaUwqq8wqj6JYBDFBLeVDT8f-IvqA51c3DA</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Komarov, M. A.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20201001</creationdate><title>Extremal Properties of Logarithmic Derivatives of Polynomials</title><author>Komarov, M. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c512y-c11b8c34947c78b27b3af3a24c51f3acd3d126c09d6f17fa48ac56463b80223a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analytic functions</topic><topic>Derivatives</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Polynomials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Komarov, M. A.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Komarov, M. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extremal Properties of Logarithmic Derivatives of Polynomials</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>250</volume><issue>1</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>We study extremal properties of simple partial fractions ρ n (i.e., the logarithmic derivatives of algebraic polynomials of degree n ) on a segment and on a circle. We prove that for any a &gt; 1 the poles of a fraction ρ n whose sup norm does not exceed ln(1 + a − n ) on [−1, 1] lie in the exterior of the ellipse with foci ±1 and sum of half-axes a . For a real-valued analytic function f bounded in the ellipse with a = 3 + 2 2 we show that if a real-valued simple partial fraction of order not greater than n is least deviating from f in the C ([−1, 1])-metric, then such a fraction is unique and is characterized by an alternance of n + 1 points in the segment [−1, 1].</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10958-020-04991-y</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1072-3374
ispartof Journal of mathematical sciences (New York, N.Y.), 2020-10, Vol.250 (1), p.1-9
issn 1072-3374
1573-8795
language eng
recordid cdi_proquest_journals_2440296213
source SpringerLink Journals - AutoHoldings
subjects Analytic functions
Derivatives
Mathematical analysis
Mathematics
Mathematics and Statistics
Polynomials
title Extremal Properties of Logarithmic Derivatives of Polynomials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A38%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extremal%20Properties%20of%20Logarithmic%20Derivatives%20of%20Polynomials&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Komarov,%20M.%20A.&rft.date=2020-10-01&rft.volume=250&rft.issue=1&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-020-04991-y&rft_dat=%3Cgale_proqu%3EA684933926%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2440296213&rft_id=info:pmid/&rft_galeid=A684933926&rfr_iscdi=true