Extremal Properties of Logarithmic Derivatives of Polynomials
We study extremal properties of simple partial fractions ρ n (i.e., the logarithmic derivatives of algebraic polynomials of degree n ) on a segment and on a circle. We prove that for any a > 1 the poles of a fraction ρ n whose sup norm does not exceed ln(1 + a − n ) on [−1, 1] lie in the exterior...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2020-10, Vol.250 (1), p.1-9 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study extremal properties of simple partial fractions
ρ
n
(i.e., the logarithmic derivatives of algebraic polynomials of degree
n
) on a segment and on a circle. We prove that for any
a
> 1 the poles of a fraction
ρ
n
whose sup norm does not exceed ln(1 +
a
−
n
) on [−1, 1] lie in the exterior of the ellipse with foci ±1 and sum of half-axes
a
. For a real-valued analytic function
f
bounded in the ellipse with
a
=
3
+
2
2
we show that if a real-valued simple partial fraction of order not greater than
n
is least deviating from
f
in the
C
([−1, 1])-metric, then such a fraction is unique and is characterized by an alternance of
n
+ 1 points in the segment [−1, 1]. |
---|---|
ISSN: | 1072-3374 1573-8795 |
DOI: | 10.1007/s10958-020-04991-y |