Decay of Solutions to the Linearized Free Surface Navier–Stokes Equations with Fractional Boundary Operators

In this paper we consider a slab of viscous incompressible fluid bounded above by a free boundary, bounded below by a flat rigid interface, and acted on by gravity. The unique equilibrium is a flat slab of quiescent fluid. It is well-known that equilibria are asymptotically stable but that the rate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical fluid mechanics 2020, Vol.22 (4), Article 48
Hauptverfasser: Tice, Ian, Zbarsky, Samuel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we consider a slab of viscous incompressible fluid bounded above by a free boundary, bounded below by a flat rigid interface, and acted on by gravity. The unique equilibrium is a flat slab of quiescent fluid. It is well-known that equilibria are asymptotically stable but that the rate of decay to equilibrium depends heavily on whether or not surface tension forces are accounted for at the free interface. The aim of the paper is to better understand the decay rate by studying a generalization of the linearized dynamics in which the surface tension operator is replaced by a more general fractional-order differential operator, which allows us to continuously interpolate between the case without surface tension and the case with surface tension. We study the decay of the linearized problem in terms of the choice of the generalized operator and in terms of the horizontal cross-section. In the case of a periodic cross-section we identify a critical order of the differential operator at which the decay rate transitions from almost exponential to exponential.
ISSN:1422-6928
1422-6952
DOI:10.1007/s00021-020-00512-8