Spatially Inhomogeneous Solutions to the Nonlocal Erosion Equation with Two Spatial Variables

We consider the periodic boundary value problem for the nonlocal erosion equation with two spatial variables and obtain sufficient conditions for the existence and stability of spatially inhomogeneous cycles. We analyze the boundary value problem in the case where the length of the domain is essenti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2020-10, Vol.250 (1), p.42-50
1. Verfasser: Kulikov, D. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 50
container_issue 1
container_start_page 42
container_title Journal of mathematical sciences (New York, N.Y.)
container_volume 250
creator Kulikov, D. A.
description We consider the periodic boundary value problem for the nonlocal erosion equation with two spatial variables and obtain sufficient conditions for the existence and stability of spatially inhomogeneous cycles. We analyze the boundary value problem in the case where the length of the domain is essentially greater than the width and obtain conditions for the existence of sufficiently many spatially inhomogeneous cycles depending on both spatial variables. For narrow domains the problem is reduced to analyzing an auxiliary boundary value problem for the Ginzburg–Landau equation.
doi_str_mv 10.1007/s10958-020-04995-8
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2440296071</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A726603359</galeid><sourcerecordid>A726603359</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4638-3222e7e854dd2b46cd9a3189d2cea6674166ebe4c47b5c2bbd19204bff2d29dc3</originalsourceid><addsrcrecordid>eNqNkstqGzEYhYfSQtO0L9CVoKsulOo2uixDcFtDaCFOuytCo9HYCvLIkTSkefvKdSA2mCRoIfHrO-eAdJrmI0ZnGCHxJWOkWgkRQRAxpVooXzUnuBUUSqHa1_WMBIGUCva2eZfzDaoiLulJ82exMcWbEO7BfFzFdVy60cUpg0UMU_FxzKBEUFYO_IhjiNYEMEsx1wswu53MlgB3vqzA9V0ED17gt0nedMHl982bwYTsPjzsp82vr7Pri-_w8ue3-cX5JbSMUwkpIcQJJ1vW96Rj3PbKUCxVT6wznAuGOXedY5aJrrWk63qsCGLdMJCeqN7S0-bTzneT4u3kctE3cUpjjdSEMUQURwI_UksTnPbjEEsydu2z1eeCcI4obdWTFJdMUaooqhQ8Qm0fL5kQRzf4Oj5wfQm_7392hK-rd2tvjwa8SLCf8PlAUJni_palmXLW88XVoflz7L4v2bG29iQnN-hN8muT7jVGeltWvSurrmXV_8uqZRXRnShXeFy69PiBT6j-Afsr57Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440296071</pqid></control><display><type>article</type><title>Spatially Inhomogeneous Solutions to the Nonlocal Erosion Equation with Two Spatial Variables</title><source>SpringerNature Complete Journals</source><creator>Kulikov, D. A.</creator><creatorcontrib>Kulikov, D. A.</creatorcontrib><description>We consider the periodic boundary value problem for the nonlocal erosion equation with two spatial variables and obtain sufficient conditions for the existence and stability of spatially inhomogeneous cycles. We analyze the boundary value problem in the case where the length of the domain is essentially greater than the width and obtain conditions for the existence of sufficiently many spatially inhomogeneous cycles depending on both spatial variables. For narrow domains the problem is reduced to analyzing an auxiliary boundary value problem for the Ginzburg–Landau equation.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-020-04995-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Boundary value problems ; Domains ; Landau-Ginzburg equations ; Mathematics ; Mathematics and Statistics ; Stability analysis</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2020-10, Vol.250 (1), p.42-50</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4638-3222e7e854dd2b46cd9a3189d2cea6674166ebe4c47b5c2bbd19204bff2d29dc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10958-020-04995-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10958-020-04995-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kulikov, D. A.</creatorcontrib><title>Spatially Inhomogeneous Solutions to the Nonlocal Erosion Equation with Two Spatial Variables</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>We consider the periodic boundary value problem for the nonlocal erosion equation with two spatial variables and obtain sufficient conditions for the existence and stability of spatially inhomogeneous cycles. We analyze the boundary value problem in the case where the length of the domain is essentially greater than the width and obtain conditions for the existence of sufficiently many spatially inhomogeneous cycles depending on both spatial variables. For narrow domains the problem is reduced to analyzing an auxiliary boundary value problem for the Ginzburg–Landau equation.</description><subject>Boundary value problems</subject><subject>Domains</subject><subject>Landau-Ginzburg equations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Stability analysis</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNkstqGzEYhYfSQtO0L9CVoKsulOo2uixDcFtDaCFOuytCo9HYCvLIkTSkefvKdSA2mCRoIfHrO-eAdJrmI0ZnGCHxJWOkWgkRQRAxpVooXzUnuBUUSqHa1_WMBIGUCva2eZfzDaoiLulJ82exMcWbEO7BfFzFdVy60cUpg0UMU_FxzKBEUFYO_IhjiNYEMEsx1wswu53MlgB3vqzA9V0ED17gt0nedMHl982bwYTsPjzsp82vr7Pri-_w8ue3-cX5JbSMUwkpIcQJJ1vW96Rj3PbKUCxVT6wznAuGOXedY5aJrrWk63qsCGLdMJCeqN7S0-bTzneT4u3kctE3cUpjjdSEMUQURwI_UksTnPbjEEsydu2z1eeCcI4obdWTFJdMUaooqhQ8Qm0fL5kQRzf4Oj5wfQm_7392hK-rd2tvjwa8SLCf8PlAUJni_palmXLW88XVoflz7L4v2bG29iQnN-hN8muT7jVGeltWvSurrmXV_8uqZRXRnShXeFy69PiBT6j-Afsr57Q</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Kulikov, D. A.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20201001</creationdate><title>Spatially Inhomogeneous Solutions to the Nonlocal Erosion Equation with Two Spatial Variables</title><author>Kulikov, D. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4638-3222e7e854dd2b46cd9a3189d2cea6674166ebe4c47b5c2bbd19204bff2d29dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Boundary value problems</topic><topic>Domains</topic><topic>Landau-Ginzburg equations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Stability analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kulikov, D. A.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kulikov, D. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatially Inhomogeneous Solutions to the Nonlocal Erosion Equation with Two Spatial Variables</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>250</volume><issue>1</issue><spage>42</spage><epage>50</epage><pages>42-50</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>We consider the periodic boundary value problem for the nonlocal erosion equation with two spatial variables and obtain sufficient conditions for the existence and stability of spatially inhomogeneous cycles. We analyze the boundary value problem in the case where the length of the domain is essentially greater than the width and obtain conditions for the existence of sufficiently many spatially inhomogeneous cycles depending on both spatial variables. For narrow domains the problem is reduced to analyzing an auxiliary boundary value problem for the Ginzburg–Landau equation.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10958-020-04995-8</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1072-3374
ispartof Journal of mathematical sciences (New York, N.Y.), 2020-10, Vol.250 (1), p.42-50
issn 1072-3374
1573-8795
language eng
recordid cdi_proquest_journals_2440296071
source SpringerNature Complete Journals
subjects Boundary value problems
Domains
Landau-Ginzburg equations
Mathematics
Mathematics and Statistics
Stability analysis
title Spatially Inhomogeneous Solutions to the Nonlocal Erosion Equation with Two Spatial Variables
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T02%3A36%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatially%20Inhomogeneous%20Solutions%20to%20the%20Nonlocal%20Erosion%20Equation%20with%20Two%20Spatial%20Variables&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Kulikov,%20D.%20A.&rft.date=2020-10-01&rft.volume=250&rft.issue=1&rft.spage=42&rft.epage=50&rft.pages=42-50&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-020-04995-8&rft_dat=%3Cgale_proqu%3EA726603359%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2440296071&rft_id=info:pmid/&rft_galeid=A726603359&rfr_iscdi=true