Spatially Inhomogeneous Solutions to the Nonlocal Erosion Equation with Two Spatial Variables
We consider the periodic boundary value problem for the nonlocal erosion equation with two spatial variables and obtain sufficient conditions for the existence and stability of spatially inhomogeneous cycles. We analyze the boundary value problem in the case where the length of the domain is essenti...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2020-10, Vol.250 (1), p.42-50 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 50 |
---|---|
container_issue | 1 |
container_start_page | 42 |
container_title | Journal of mathematical sciences (New York, N.Y.) |
container_volume | 250 |
creator | Kulikov, D. A. |
description | We consider the periodic boundary value problem for the nonlocal erosion equation with two spatial variables and obtain sufficient conditions for the existence and stability of spatially inhomogeneous cycles. We analyze the boundary value problem in the case where the length of the domain is essentially greater than the width and obtain conditions for the existence of sufficiently many spatially inhomogeneous cycles depending on both spatial variables. For narrow domains the problem is reduced to analyzing an auxiliary boundary value problem for the Ginzburg–Landau equation. |
doi_str_mv | 10.1007/s10958-020-04995-8 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2440296071</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A726603359</galeid><sourcerecordid>A726603359</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4638-3222e7e854dd2b46cd9a3189d2cea6674166ebe4c47b5c2bbd19204bff2d29dc3</originalsourceid><addsrcrecordid>eNqNkstqGzEYhYfSQtO0L9CVoKsulOo2uixDcFtDaCFOuytCo9HYCvLIkTSkefvKdSA2mCRoIfHrO-eAdJrmI0ZnGCHxJWOkWgkRQRAxpVooXzUnuBUUSqHa1_WMBIGUCva2eZfzDaoiLulJ82exMcWbEO7BfFzFdVy60cUpg0UMU_FxzKBEUFYO_IhjiNYEMEsx1wswu53MlgB3vqzA9V0ED17gt0nedMHl982bwYTsPjzsp82vr7Pri-_w8ue3-cX5JbSMUwkpIcQJJ1vW96Rj3PbKUCxVT6wznAuGOXedY5aJrrWk63qsCGLdMJCeqN7S0-bTzneT4u3kctE3cUpjjdSEMUQURwI_UksTnPbjEEsydu2z1eeCcI4obdWTFJdMUaooqhQ8Qm0fL5kQRzf4Oj5wfQm_7392hK-rd2tvjwa8SLCf8PlAUJni_palmXLW88XVoflz7L4v2bG29iQnN-hN8muT7jVGeltWvSurrmXV_8uqZRXRnShXeFy69PiBT6j-Afsr57Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440296071</pqid></control><display><type>article</type><title>Spatially Inhomogeneous Solutions to the Nonlocal Erosion Equation with Two Spatial Variables</title><source>SpringerNature Complete Journals</source><creator>Kulikov, D. A.</creator><creatorcontrib>Kulikov, D. A.</creatorcontrib><description>We consider the periodic boundary value problem for the nonlocal erosion equation with two spatial variables and obtain sufficient conditions for the existence and stability of spatially inhomogeneous cycles. We analyze the boundary value problem in the case where the length of the domain is essentially greater than the width and obtain conditions for the existence of sufficiently many spatially inhomogeneous cycles depending on both spatial variables. For narrow domains the problem is reduced to analyzing an auxiliary boundary value problem for the Ginzburg–Landau equation.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-020-04995-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Boundary value problems ; Domains ; Landau-Ginzburg equations ; Mathematics ; Mathematics and Statistics ; Stability analysis</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2020-10, Vol.250 (1), p.42-50</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4638-3222e7e854dd2b46cd9a3189d2cea6674166ebe4c47b5c2bbd19204bff2d29dc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10958-020-04995-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10958-020-04995-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kulikov, D. A.</creatorcontrib><title>Spatially Inhomogeneous Solutions to the Nonlocal Erosion Equation with Two Spatial Variables</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>We consider the periodic boundary value problem for the nonlocal erosion equation with two spatial variables and obtain sufficient conditions for the existence and stability of spatially inhomogeneous cycles. We analyze the boundary value problem in the case where the length of the domain is essentially greater than the width and obtain conditions for the existence of sufficiently many spatially inhomogeneous cycles depending on both spatial variables. For narrow domains the problem is reduced to analyzing an auxiliary boundary value problem for the Ginzburg–Landau equation.</description><subject>Boundary value problems</subject><subject>Domains</subject><subject>Landau-Ginzburg equations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Stability analysis</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNkstqGzEYhYfSQtO0L9CVoKsulOo2uixDcFtDaCFOuytCo9HYCvLIkTSkefvKdSA2mCRoIfHrO-eAdJrmI0ZnGCHxJWOkWgkRQRAxpVooXzUnuBUUSqHa1_WMBIGUCva2eZfzDaoiLulJ82exMcWbEO7BfFzFdVy60cUpg0UMU_FxzKBEUFYO_IhjiNYEMEsx1wswu53MlgB3vqzA9V0ED17gt0nedMHl982bwYTsPjzsp82vr7Pri-_w8ue3-cX5JbSMUwkpIcQJJ1vW96Rj3PbKUCxVT6wznAuGOXedY5aJrrWk63qsCGLdMJCeqN7S0-bTzneT4u3kctE3cUpjjdSEMUQURwI_UksTnPbjEEsydu2z1eeCcI4obdWTFJdMUaooqhQ8Qm0fL5kQRzf4Oj5wfQm_7392hK-rd2tvjwa8SLCf8PlAUJni_palmXLW88XVoflz7L4v2bG29iQnN-hN8muT7jVGeltWvSurrmXV_8uqZRXRnShXeFy69PiBT6j-Afsr57Q</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Kulikov, D. A.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20201001</creationdate><title>Spatially Inhomogeneous Solutions to the Nonlocal Erosion Equation with Two Spatial Variables</title><author>Kulikov, D. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4638-3222e7e854dd2b46cd9a3189d2cea6674166ebe4c47b5c2bbd19204bff2d29dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Boundary value problems</topic><topic>Domains</topic><topic>Landau-Ginzburg equations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Stability analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kulikov, D. A.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kulikov, D. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatially Inhomogeneous Solutions to the Nonlocal Erosion Equation with Two Spatial Variables</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>250</volume><issue>1</issue><spage>42</spage><epage>50</epage><pages>42-50</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>We consider the periodic boundary value problem for the nonlocal erosion equation with two spatial variables and obtain sufficient conditions for the existence and stability of spatially inhomogeneous cycles. We analyze the boundary value problem in the case where the length of the domain is essentially greater than the width and obtain conditions for the existence of sufficiently many spatially inhomogeneous cycles depending on both spatial variables. For narrow domains the problem is reduced to analyzing an auxiliary boundary value problem for the Ginzburg–Landau equation.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10958-020-04995-8</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1072-3374 |
ispartof | Journal of mathematical sciences (New York, N.Y.), 2020-10, Vol.250 (1), p.42-50 |
issn | 1072-3374 1573-8795 |
language | eng |
recordid | cdi_proquest_journals_2440296071 |
source | SpringerNature Complete Journals |
subjects | Boundary value problems Domains Landau-Ginzburg equations Mathematics Mathematics and Statistics Stability analysis |
title | Spatially Inhomogeneous Solutions to the Nonlocal Erosion Equation with Two Spatial Variables |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T02%3A36%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatially%20Inhomogeneous%20Solutions%20to%20the%20Nonlocal%20Erosion%20Equation%20with%20Two%20Spatial%20Variables&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Kulikov,%20D.%20A.&rft.date=2020-10-01&rft.volume=250&rft.issue=1&rft.spage=42&rft.epage=50&rft.pages=42-50&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-020-04995-8&rft_dat=%3Cgale_proqu%3EA726603359%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2440296071&rft_id=info:pmid/&rft_galeid=A726603359&rfr_iscdi=true |