Spatially Inhomogeneous Solutions to the Nonlocal Erosion Equation with Two Spatial Variables

We consider the periodic boundary value problem for the nonlocal erosion equation with two spatial variables and obtain sufficient conditions for the existence and stability of spatially inhomogeneous cycles. We analyze the boundary value problem in the case where the length of the domain is essenti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2020-10, Vol.250 (1), p.42-50
1. Verfasser: Kulikov, D. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the periodic boundary value problem for the nonlocal erosion equation with two spatial variables and obtain sufficient conditions for the existence and stability of spatially inhomogeneous cycles. We analyze the boundary value problem in the case where the length of the domain is essentially greater than the width and obtain conditions for the existence of sufficiently many spatially inhomogeneous cycles depending on both spatial variables. For narrow domains the problem is reduced to analyzing an auxiliary boundary value problem for the Ginzburg–Landau equation.
ISSN:1072-3374
1573-8795
DOI:10.1007/s10958-020-04995-8