Efficient two-qubit pulse sequences beyond CNOT
We design efficient controlled-rotation gates with arbitrary angle acting on three-spin encoded qubits for exchange-only quantum computation. Two pulse sequence constructions are given. The first is motivated by an analytic derivation of the efficient Fong-Wandzura sequence for an exact cnot gate. T...
Gespeichert in:
Veröffentlicht in: | Physical review. B 2020-08, Vol.102 (7), p.1, Article 075311 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We design efficient controlled-rotation gates with arbitrary angle acting on three-spin encoded qubits for exchange-only quantum computation. Two pulse sequence constructions are given. The first is motivated by an analytic derivation of the efficient Fong-Wandzura sequence for an exact cnot gate. This derivation, briefly reviewed here, is based on elevating short sequences of swap pulses to an entangling two-qubit gate. To go beyond cnot, we apply a similar elevation to a modified short sequence consisting of swaps and one pulse of arbitrary duration. This results in two-qubit sequences that carry out controlled-rotation gates of arbitrary angle. The second construction streamlines a class of arbitrary cphase gates established earlier. Both constructions are based on building two-qubit sequences out of subsequences with special properties that render each step of the construction analytically tractable. |
---|---|
ISSN: | 2469-9950 2469-9969 |
DOI: | 10.1103/PhysRevB.102.075311 |