Effect of the early kinetic decoupling in a fermionic dark matter model
We study the effect of the early kinetic decoupling in a model of fermionic dark matter (DM) that interacts with the standard model particles only by exchanging the Higgs boson. There are two DM-Higgs couplings, namely CP-conserving and CP-violating couplings. If the mass of the DM is slightly below...
Gespeichert in:
Veröffentlicht in: | Physical review. D 2020-08, Vol.102 (3), p.1, Article 035018 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the effect of the early kinetic decoupling in a model of fermionic dark matter (DM) that interacts with the standard model particles only by exchanging the Higgs boson. There are two DM-Higgs couplings, namely CP-conserving and CP-violating couplings. If the mass of the DM is slightly below half of the Higgs boson mass, then the couplings are suppressed to obtain the measured value of the DM energy density by the freeze-out mechanism. In addition, the scattering processes of DM off particles in the thermal bath are suppressed by the small momentum transfer if the CP-violating DM-Higgs coupling is larger than the CP-conserving one. Due to the suppression, the temperature of the DM can differ from the temperature of the thermal bath. By solving coupled equations for the number density and temperature of the DM, we calculate the DM-Higgs couplings that reproduce the right amount of the DM relic abundance. We find that the couplings have to be larger than the one obtained without taking into account the difference in the temperatures. A consequence of the enhancement of the DM-Higgs couplings is the enhancement of the Higgs invisible decay branching ratio. The enhancement is testable at current and future collider experiments. |
---|---|
ISSN: | 2470-0010 2470-0029 |
DOI: | 10.1103/PhysRevD.102.035018 |