Highly Sensitive SPR Sensor Based on Ag-ITO-BlueP/TMDCs-Graphene Heterostructure
The novel surface plasmon resonance (SPR) sensor based on hybrid structure of Ag-indium tin oxide (ITO)-blue phosphorene (BlueP)/transition metal dichalcogenides (TMDCs)-graphene is presented. The BlueP/TMDCs heterostructure works as an interacting layer with the analyte for the enhancement of the o...
Gespeichert in:
Veröffentlicht in: | Plasmonics (Norwell, Mass.) Mass.), 2020-10, Vol.15 (5), p.1489-1498 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The novel surface plasmon resonance (SPR) sensor based on hybrid structure of Ag-indium tin oxide (ITO)-blue phosphorene (BlueP)/transition metal dichalcogenides (TMDCs)-graphene is presented. The BlueP/TMDCs heterostructure works as an interacting layer with the analyte for the enhancement of the of the sensor’s sensitivity. For angular sensitivity, when the BlueP/WS
2
and graphene are both monolayer, the highest angular sensitivity with 348.8°/RIU is obtained. The maximum angular sensitivity of our proposed SPR sensor is about 2.83 times of the conventional sensor. For phase sensitivity, when the BlueP/WSe
2
is monolayer and graphene is bilayer, the highest phase sensitivity with 3.603 × 10
6
deg/RIU is obtained. The highest phase sensitivity of our proposed SPR sensor is about 2.78 times of the Ag-ITO-graphene structure and 4.16 times of the Ag-ITO structure. The SPR sensor has the advantages of high sensitivity, repeatability, and reusability, so it has a good prospect application for food safety detection, biological engineering, medical diagnosis, and biochemical detection. |
---|---|
ISSN: | 1557-1955 1557-1963 |
DOI: | 10.1007/s11468-020-01165-z |