Pizzetti formula on the Grassmannian of 2-planes

This paper is devoted to the role played by the Higgs algebra H 3 in the generalisation of classical harmonic analysis from the sphere S m - 1 to the (oriented) Grassmann manifold Gr o ( m , 2 ) of 2-planes. This algebra is identified as the dual partner (in the sense of Howe duality) of the orthogo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of global analysis and geometry 2020-10, Vol.58 (3), p.325-350
Hauptverfasser: Eelbode, D., Homma, Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper is devoted to the role played by the Higgs algebra H 3 in the generalisation of classical harmonic analysis from the sphere S m - 1 to the (oriented) Grassmann manifold Gr o ( m , 2 ) of 2-planes. This algebra is identified as the dual partner (in the sense of Howe duality) of the orthogonal group SO ( m ) acting on functions on the Grassmannian. This is then used to obtain a Pizzetti formula for integration over this manifold. The resulting formulas are finally compared to formulas obtained earlier for the Pizzetti integration over Stiefel manifolds, using an argument involving symmetry reduction.
ISSN:0232-704X
1572-9060
DOI:10.1007/s10455-020-09731-8