Numerical two-dimensional thermal analysis of the human skin using the multigrid method
Heat can be used as an adjuvant treatment of many diseases and also as a powerful tool to help diagnose cancers, with the advantage to be a noninvasive exam. Some tumors may be best diagnosed by evaluating body temperature distribution, for instance, it is observed that local temperatures of the ski...
Gespeichert in:
Veröffentlicht in: | Acta scientiarum. Technology 2020-01, Vol.42, p.1 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Heat can be used as an adjuvant treatment of many diseases and also as a powerful tool to help diagnose cancers, with the advantage to be a noninvasive exam. Some tumors may be best diagnosed by evaluating body temperature distribution, for instance, it is observed that local temperatures of the skin over a tumor are higher than the average skin temperature. Certainly, it is expected from medical diagnostics to be, early, fast and very precise. Especially if the health problem is a tumor, it is necessary to know the shape and the size of the cancer. Thermal images can provide further information about the tumor, generally, the thermal diagnostic is made comparing images of the region with a bioheat model. In this context, the present study shows interesting results about the multigrid method applied to solve the Pennes bioheat equation in two dimensions, using a non-stationary and steady state cases for the skin heath and with melanoma. The multigrid method presented itself as an extremely efficient and fast tool to solve the bioheat equation with refined grids that provide good spatial precision. |
---|---|
ISSN: | 1806-2563 1807-8664 1806-2563 |
DOI: | 10.4025/actascitechnol.v42i1.40992 |