Extraction of Walsh Harmonics by Linear Combinations of Dyadic Shifts

We solve two problems of extracting any term from a signal in the form of a finite sum of the Fourier series with respect to the discrete Walsh functions (in the first case) and the Walsh functions (in the second case) by a linear combination of group shifts of the original signal. We propose a vect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2020-10, Vol.249 (6), p.838-849
1. Verfasser: Bespalov, M. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We solve two problems of extracting any term from a signal in the form of a finite sum of the Fourier series with respect to the discrete Walsh functions (in the first case) and the Walsh functions (in the second case) by a linear combination of group shifts of the original signal. We propose a vector version of the discrete time- and frequencythinning wavelet Haar bases, which widely used in encoding and decoding algorithms for the discrete Haar transform. Bibliography: 10 titles.
ISSN:1072-3374
1573-8795
DOI:10.1007/s10958-020-04978-9