Extraction of Walsh Harmonics by Linear Combinations of Dyadic Shifts
We solve two problems of extracting any term from a signal in the form of a finite sum of the Fourier series with respect to the discrete Walsh functions (in the first case) and the Walsh functions (in the second case) by a linear combination of group shifts of the original signal. We propose a vect...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2020-10, Vol.249 (6), p.838-849 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We solve two problems of extracting any term from a signal in the form of a finite sum of the Fourier series with respect to the discrete Walsh functions (in the first case) and the Walsh functions (in the second case) by a linear combination of group shifts of the original signal. We propose a vector version of the discrete time- and frequencythinning wavelet Haar bases, which widely used in encoding and decoding algorithms for the discrete Haar transform. Bibliography: 10 titles. |
---|---|
ISSN: | 1072-3374 1573-8795 |
DOI: | 10.1007/s10958-020-04978-9 |