Fractional traveling wave solutions of the (2 + 1)‐dimensional fractional complex Ginzburg–Landau equation via two methods

A (2 + 1)‐dimensional fractional complex Ginzburg–Landau equation is solved via fractional Riccati method and fractional bifunction method, and exact traveling wave solutions including soliton solution and combined soliton solutions are constructed based on Mittag–Leffler function. A series of fract...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2020-10, Vol.43 (15), p.8518-8526
Hauptverfasser: Lu, Peng‐Hong, Wang, Ben‐Hai, Dai, Chao‐Qing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A (2 + 1)‐dimensional fractional complex Ginzburg–Landau equation is solved via fractional Riccati method and fractional bifunction method, and exact traveling wave solutions including soliton solution and combined soliton solutions are constructed based on Mittag–Leffler function. A series of fractional orders is used to demonstrate the graphical representation and physical interpretation of the resulting solutions. The role of the fractional order is revealed.
ISSN:0170-4214
1099-1476
DOI:10.1002/mma.6511