Generalized wavelet quasilinearization method for solving population growth model of fractional order
The primary aim of this study is to introduce and develop a generalized wavelet method together with the quasilinearization technique to solve the Volterra's population growth model of fractional order. Unlike the existing operational matrix methods based on orthogonal functions, we formulate t...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2020-10, Vol.43 (15), p.8753-8762 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The primary aim of this study is to introduce and develop a generalized wavelet method together with the quasilinearization technique to solve the Volterra's population growth model of fractional order. Unlike the existing operational matrix methods based on orthogonal functions, we formulate the wavelet operational matrices of general order integration without using the block pulse functions. Consequently, the governing problem is transformed into an equivalent system of algebraic equations, which can be tackled with any classical method. The applicability of the proposed method is demonstrated via an illustrative comparison of the numerical outcomes with those found by other known methods. The experimental outcomes demonstrate that the proposed method is fast, accurate, simple, and computationally reliable. |
---|---|
ISSN: | 0170-4214 1099-1476 |
DOI: | 10.1002/mma.6542 |